historical-ocr / app.py
milwright's picture
Update app.py
d9621bf verified
raw
history blame
94.2 kB
import os
import streamlit as st
import json
import sys
import time
import base64
# Updated import section
from pathlib import Path
import tempfile
import io
from pdf2image import convert_from_bytes
from PIL import Image, ImageEnhance, ImageFilter
import cv2
import numpy as np
from datetime import datetime
# Import the StructuredOCR class and config from the local files
from structured_ocr import StructuredOCR
from config import MISTRAL_API_KEY
# Import utilities for handling previous results
from ocr_utils import create_results_zip
def get_base64_from_image(image_path):
"""Get base64 string from image file"""
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
# Set favicon path
favicon_path = os.path.join(os.path.dirname(__file__), "static/favicon.png")
# Set page configuration
st.set_page_config(
page_title="Historical OCR",
page_icon=favicon_path if os.path.exists(favicon_path) else "πŸ“œ",
layout="wide",
initial_sidebar_state="expanded"
)
# Enable caching for expensive operations with longer TTL for better performance
@st.cache_data(ttl=24*3600, show_spinner=False) # Cache for 24 hours instead of 1 hour
def convert_pdf_to_images(pdf_bytes, dpi=150, rotation=0):
"""Convert PDF bytes to a list of images with caching"""
try:
images = convert_from_bytes(pdf_bytes, dpi=dpi)
# Apply rotation if specified
if rotation != 0 and images:
rotated_images = []
for img in images:
rotated_img = img.rotate(rotation, expand=True, resample=Image.BICUBIC)
rotated_images.append(rotated_img)
return rotated_images
return images
except Exception as e:
st.error(f"Error converting PDF: {str(e)}")
return []
# Cache preprocessed images for better performance
@st.cache_data(ttl=24*3600, show_spinner=False) # Cache for 24 hours
def preprocess_image(image_bytes, preprocessing_options):
"""Preprocess image with selected options optimized for historical document OCR quality"""
# Setup basic console logging
import logging
logger = logging.getLogger("image_preprocessor")
logger.setLevel(logging.INFO)
# Log which preprocessing options are being applied
logger.info(f"Preprocessing image with options: {preprocessing_options}")
# Convert bytes to PIL Image
image = Image.open(io.BytesIO(image_bytes))
# Check for alpha channel (RGBA) and convert to RGB if needed
if image.mode == 'RGBA':
# Convert RGBA to RGB by compositing the image onto a white background
background = Image.new('RGB', image.size, (255, 255, 255))
background.paste(image, mask=image.split()[3]) # 3 is the alpha channel
image = background
logger.info("Converted RGBA image to RGB")
elif image.mode not in ('RGB', 'L'):
# Convert other modes to RGB as well
image = image.convert('RGB')
logger.info(f"Converted {image.mode} image to RGB")
# Apply rotation if specified
if preprocessing_options.get("rotation", 0) != 0:
rotation_degrees = preprocessing_options.get("rotation")
image = image.rotate(rotation_degrees, expand=True, resample=Image.BICUBIC)
# Resize large images while preserving details important for OCR
width, height = image.size
max_dimension = max(width, height)
# Less aggressive resizing to preserve document details
if max_dimension > 2500:
scale_factor = 2500 / max_dimension
new_width = int(width * scale_factor)
new_height = int(height * scale_factor)
# Use LANCZOS for better quality preservation
image = image.resize((new_width, new_height), Image.LANCZOS)
img_array = np.array(image)
# Apply preprocessing based on selected options with settings optimized for historical documents
document_type = preprocessing_options.get("document_type", "standard")
# Process grayscale option first as it's a common foundation
if preprocessing_options.get("grayscale", False):
if len(img_array.shape) == 3: # Only convert if it's not already grayscale
if document_type == "handwritten":
# Enhanced grayscale processing for handwritten documents
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Apply adaptive histogram equalization to enhance handwriting
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
img_array = clahe.apply(img_array)
else:
# Standard grayscale for printed documents
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
# Convert back to RGB for further processing
img_array = cv2.cvtColor(img_array, cv2.COLOR_GRAY2RGB)
if preprocessing_options.get("contrast", 0) != 0:
contrast_factor = 1 + (preprocessing_options.get("contrast", 0) / 10)
image = Image.fromarray(img_array)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(contrast_factor)
img_array = np.array(image)
if preprocessing_options.get("denoise", False):
try:
# Apply appropriate denoising based on document type
if document_type == "handwritten":
# Very light denoising for handwritten documents to preserve pen strokes
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # Color image
img_array = cv2.fastNlMeansDenoisingColored(img_array, None, 3, 3, 5, 9)
else: # Grayscale image
img_array = cv2.fastNlMeansDenoising(img_array, None, 3, 7, 21)
else:
# Standard denoising for printed documents
if len(img_array.shape) == 3 and img_array.shape[2] == 3: # Color image
img_array = cv2.fastNlMeansDenoisingColored(img_array, None, 5, 5, 7, 21)
else: # Grayscale image
img_array = cv2.fastNlMeansDenoising(img_array, None, 5, 7, 21)
except Exception as e:
print(f"Denoising error: {str(e)}, falling back to standard processing")
# Convert back to PIL Image
processed_image = Image.fromarray(img_array)
# Higher quality for OCR processing
byte_io = io.BytesIO()
try:
# Make sure the image is in RGB mode before saving as JPEG
if processed_image.mode not in ('RGB', 'L'):
processed_image = processed_image.convert('RGB')
processed_image.save(byte_io, format='JPEG', quality=92, optimize=True)
byte_io.seek(0)
logger.info(f"Preprocessing complete. Original image mode: {image.mode}, processed mode: {processed_image.mode}")
logger.info(f"Original size: {len(image_bytes)/1024:.1f}KB, processed size: {len(byte_io.getvalue())/1024:.1f}KB")
return byte_io.getvalue()
except Exception as e:
logger.error(f"Error saving processed image: {str(e)}")
# Fallback to original image
logger.info("Using original image as fallback")
image_io = io.BytesIO()
image.save(image_io, format='JPEG', quality=92)
image_io.seek(0)
return image_io.getvalue()
# Cache OCR results in memory to speed up repeated processing
@st.cache_data(ttl=24*3600, max_entries=20, show_spinner=False)
def process_file_cached(file_path, file_type, use_vision, file_size_mb, cache_key):
"""Cached version of OCR processing to reuse results"""
# Initialize OCR processor
processor = StructuredOCR()
# Process the file
result = processor.process_file(
file_path,
file_type=file_type,
use_vision=use_vision,
file_size_mb=file_size_mb
)
return result
# Define functions
def process_file(uploaded_file, use_vision=True, preprocessing_options=None, progress_container=None):
"""Process the uploaded file and return the OCR results
Args:
uploaded_file: The uploaded file to process
use_vision: Whether to use vision model
preprocessing_options: Dictionary of preprocessing options
progress_container: Optional container for progress indicators
"""
if preprocessing_options is None:
preprocessing_options = {}
# Create a container for progress indicators if not provided
if progress_container is None:
progress_container = st.empty()
with progress_container.container():
progress_bar = st.progress(0)
status_text = st.empty()
status_text.markdown('<div class="processing-status-container">Preparing file for processing...</div>', unsafe_allow_html=True)
try:
# Check if API key is available
if not MISTRAL_API_KEY:
# Return dummy data if no API key
progress_bar.progress(100)
status_text.empty()
return {
"file_name": uploaded_file.name,
"topics": ["Document"],
"languages": ["English"],
"ocr_contents": {
"title": "API Key Required",
"content": "Please set the MISTRAL_API_KEY environment variable to process documents."
}
}
# Update progress - more granular steps
progress_bar.progress(10)
status_text.markdown('<div class="processing-status-container">Initializing OCR processor...</div>', unsafe_allow_html=True)
# Determine file type from extension
file_ext = Path(uploaded_file.name).suffix.lower()
file_type = "pdf" if file_ext == ".pdf" else "image"
file_bytes = uploaded_file.getvalue()
# Create a temporary file for processing
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as tmp:
tmp.write(file_bytes)
temp_path = tmp.name
# Get PDF rotation value if available and file is a PDF
pdf_rotation_value = pdf_rotation if 'pdf_rotation' in locals() and file_type == "pdf" else 0
progress_bar.progress(15)
# For PDFs, we need to handle differently
if file_type == "pdf":
status_text.markdown('<div class="processing-status-container">Converting PDF to images...</div>', unsafe_allow_html=True)
progress_bar.progress(20)
# Convert PDF to images
try:
# Use the PDF processing pipeline directly from the StructuredOCR class
processor = StructuredOCR()
# Process the file with direct PDF handling
progress_bar.progress(30)
status_text.markdown('<div class="processing-status-container">Processing PDF with OCR...</div>', unsafe_allow_html=True)
# Get file size in MB for API limits
file_size_mb = os.path.getsize(temp_path) / (1024 * 1024)
# Check if file exceeds API limits (50 MB)
if file_size_mb > 50:
os.unlink(temp_path) # Clean up temp file
progress_bar.progress(100)
status_text.empty()
progress_container.empty()
return {
"file_name": uploaded_file.name,
"topics": ["Document"],
"languages": ["English"],
"error": f"File size {file_size_mb:.2f} MB exceeds Mistral API limit of 50 MB",
"ocr_contents": {
"error": f"Failed to process file: File size {file_size_mb:.2f} MB exceeds Mistral API limit of 50 MB",
"partial_text": "Document could not be processed due to size limitations."
}
}
# Generate cache key
import hashlib
file_hash = hashlib.md5(file_bytes).hexdigest()
cache_key = f"{file_hash}_{file_type}_{use_vision}_{pdf_rotation_value}"
# Process with cached function if possible
try:
result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key)
progress_bar.progress(90)
status_text.markdown('<div class="processing-status-container">Finalizing results...</div>', unsafe_allow_html=True)
except Exception as e:
status_text.markdown(f'<div class="processing-status-container">Processing error: {str(e)}. Retrying...</div>', unsafe_allow_html=True)
progress_bar.progress(60)
# If caching fails, process directly
result = processor.process_file(
temp_path,
file_type=file_type,
use_vision=use_vision,
file_size_mb=file_size_mb,
)
progress_bar.progress(90)
status_text.markdown('<div class="processing-status-container">Finalizing results...</div>', unsafe_allow_html=True)
except Exception as e:
os.unlink(temp_path) # Clean up temp file
progress_bar.progress(100)
status_text.empty()
progress_container.empty()
raise ValueError(f"Error processing PDF: {str(e)}")
else:
# For image files, apply preprocessing if needed
# Check if any preprocessing options with boolean values are True, or if any non-boolean values are non-default
has_preprocessing = (
preprocessing_options.get("grayscale", False) or
preprocessing_options.get("denoise", False) or
preprocessing_options.get("contrast", 0) != 0 or
preprocessing_options.get("rotation", 0) != 0 or
preprocessing_options.get("document_type", "standard") != "standard"
)
if has_preprocessing:
status_text.markdown('<div class="processing-status-container">Applying image preprocessing...</div>', unsafe_allow_html=True)
progress_bar.progress(20)
processed_bytes = preprocess_image(file_bytes, preprocessing_options)
progress_bar.progress(25)
# Save processed image to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=file_ext) as proc_tmp:
proc_tmp.write(processed_bytes)
# Clean up original temp file and use the processed one
if os.path.exists(temp_path):
os.unlink(temp_path)
temp_path = proc_tmp.name
progress_bar.progress(30)
else:
progress_bar.progress(30)
# Get file size in MB for API limits
file_size_mb = os.path.getsize(temp_path) / (1024 * 1024)
# Check if file exceeds API limits (50 MB)
if file_size_mb > 50:
os.unlink(temp_path) # Clean up temp file
progress_bar.progress(100)
status_text.empty()
progress_container.empty()
return {
"file_name": uploaded_file.name,
"topics": ["Document"],
"languages": ["English"],
"error": f"File size {file_size_mb:.2f} MB exceeds Mistral API limit of 50 MB",
"ocr_contents": {
"error": f"Failed to process file: File size {file_size_mb:.2f} MB exceeds Mistral API limit of 50 MB",
"partial_text": "Document could not be processed due to size limitations."
}
}
# Update progress - more granular steps
progress_bar.progress(40)
status_text.markdown('<div class="processing-status-container">Preparing document for OCR analysis...</div>', unsafe_allow_html=True)
# Generate a cache key based on file content, type and settings
import hashlib
# Add pdf_rotation to cache key if present
pdf_rotation_value = pdf_rotation if 'pdf_rotation' in locals() else 0
file_hash = hashlib.md5(open(temp_path, 'rb').read()).hexdigest()
cache_key = f"{file_hash}_{file_type}_{use_vision}_{pdf_rotation_value}"
progress_bar.progress(50)
status_text.markdown('<div class="processing-status-container">Processing document with OCR...</div>', unsafe_allow_html=True)
# Process the file using cached function if possible
try:
result = process_file_cached(temp_path, file_type, use_vision, file_size_mb, cache_key)
progress_bar.progress(80)
status_text.markdown('<div class="processing-status-container">Analyzing document structure...</div>', unsafe_allow_html=True)
progress_bar.progress(90)
status_text.markdown('<div class="processing-status-container">Finalizing results...</div>', unsafe_allow_html=True)
except Exception as e:
progress_bar.progress(60)
status_text.markdown(f'<div class="processing-status-container">Processing error: {str(e)}. Retrying...</div>', unsafe_allow_html=True)
# If caching fails, process directly
processor = StructuredOCR()
result = processor.process_file(temp_path, file_type=file_type, use_vision=use_vision, file_size_mb=file_size_mb)
progress_bar.progress(90)
status_text.markdown('<div class="processing-status-container">Finalizing results...</div>', unsafe_allow_html=True)
# Complete progress
progress_bar.progress(100)
status_text.markdown('<div class="processing-status-container">Processing complete!</div>', unsafe_allow_html=True)
time.sleep(0.8) # Brief pause to show completion
status_text.empty()
progress_container.empty() # Remove progress indicators when done
# Clean up the temporary file
if os.path.exists(temp_path):
try:
os.unlink(temp_path)
except:
pass # Ignore errors when cleaning up temporary files
return result
except Exception as e:
progress_bar.progress(100)
error_message = str(e)
# Check for specific error types and provide helpful user-facing messages
if "rate limit" in error_message.lower() or "429" in error_message or "requests rate limit exceeded" in error_message.lower():
friendly_message = "The AI service is currently experiencing high demand. Please try again in a few minutes."
logger = logging.getLogger("app")
logger.error(f"Rate limit error: {error_message}")
status_text.markdown(f'<div class="processing-status-container" style="border-left-color: #ff9800;">Rate Limit: {friendly_message}</div>', unsafe_allow_html=True)
elif "quota" in error_message.lower() or "credit" in error_message.lower() or "subscription" in error_message.lower():
friendly_message = "The API usage quota has been reached. Please check your API key and subscription limits."
status_text.markdown(f'<div class="processing-status-container" style="border-left-color: #ef5350;">API Quota: {friendly_message}</div>', unsafe_allow_html=True)
else:
status_text.markdown(f'<div class="processing-status-container" style="border-left-color: #ef5350;">Error: {error_message}</div>', unsafe_allow_html=True)
time.sleep(1.5) # Show error briefly
status_text.empty()
progress_container.empty()
# Display an appropriate error message based on the exception type
if "rate limit" in error_message.lower() or "429" in error_message or "requests rate limit exceeded" in error_message.lower():
st.warning(f"API Rate Limit: {friendly_message} This is a temporary issue and does not indicate any problem with your document.")
elif "quota" in error_message.lower() or "credit" in error_message.lower() or "subscription" in error_message.lower():
st.error(f"API Quota Exceeded: {friendly_message}")
else:
st.error(f"Error during processing: {error_message}")
# Clean up the temporary file
try:
if 'temp_path' in locals() and os.path.exists(temp_path):
os.unlink(temp_path)
except:
pass # Ignore errors when cleaning up temporary files
raise
# App title and description
favicon_base64 = get_base64_from_image(os.path.join(os.path.dirname(__file__), "static/favicon.png"))
st.markdown(f'<div style="display: flex; align-items: center; gap: 10px;"><img src="data:image/png;base64,{favicon_base64}" width="36" height="36" alt="Scroll Icon"/> <div><h1 style="margin: 0; padding: 20px 0 0 0;">Historical Document OCR</h1></div></div>', unsafe_allow_html=True)
st.subheader("Made possible by Mistral AI")
# Check if pytesseract is available for fallback
try:
import pytesseract
has_pytesseract = True
except ImportError:
has_pytesseract = False
# Initialize session state for storing previous results if not already present
if 'previous_results' not in st.session_state:
st.session_state.previous_results = []
# Create main layout with tabs and columns
main_tab1, main_tab2, main_tab3 = st.tabs(["Document Processing", "Previous Results", "About"])
with main_tab1:
# Create a two-column layout for file upload and results
left_col, right_col = st.columns([1, 1])
# File uploader in the left column
with left_col:
# Simple CSS just to fix vertical text in drag and drop area
st.markdown("""
<style>
/* Reset all file uploader styling */
.uploadedFile, .uploadedFileData, .stFileUploader {
color: inherit !important;
}
/* Fix vertical text orientation */
.stFileUploader p,
.stFileUploader span,
.stFileUploader div p,
.stFileUploader div span,
.stFileUploader label p,
.stFileUploader label span,
.stFileUploader div[data-testid="stFileUploadDropzone"] p,
.stFileUploader div[data-testid="stFileUploadDropzone"] span {
writing-mode: horizontal-tb !important;
}
/* Simplify the drop zone appearance */
.stFileUploader > section > div,
.stFileUploader div[data-testid="stFileUploadDropzone"] {
min-height: 100px !important;
}
</style>
""", unsafe_allow_html=True)
# Add heading for the file uploader (just text, no container)
st.markdown('### Upload Document')
# Model info below the heading
st.markdown("Using the latest `mistral-ocr-latest` model for advanced document understanding.")
# Enhanced file uploader with better help text
uploaded_file = st.file_uploader("Drag and drop PDFs or images here", type=["pdf", "png", "jpg", "jpeg"],
help="Supports PDFs, JPGs, PNGs and other image formats")
# Removed seed prompt instructions from here, moving to sidebar
# Sidebar with options - moved up with equal spacing
with st.sidebar:
# Options title with reduced top margin
st.markdown("<h2 style='margin-top:-25px; margin-bottom:5px; padding:0;'>Options</h2>", unsafe_allow_html=True)
# Reduce spacing between sidebar sections
st.markdown("""
<style>
/* Reduce all spacing in sidebar */
.block-container {padding-top: 0;}
.stSidebar .block-container {padding-top: 0 !important;}
.stSidebar [data-testid='stSidebarNav'] {margin-bottom: 0 !important;}
.stSidebar [data-testid='stMarkdownContainer'] {margin-bottom: 0 !important; margin-top: 0 !important;}
.stSidebar [data-testid='stVerticalBlock'] {gap: 0 !important;}
/* Make checkbox rows more compact */
.stCheckbox {margin-bottom: 0 !important; padding-bottom: 0 !important; padding-top: 0 !important;}
.stExpander {margin-top: 0 !important; margin-bottom: 10px !important;}
/* Reduce space between section headings and content */
.stSidebar h1, .stSidebar h2, .stSidebar h3, .stSidebar h4, .stSidebar h5 {
margin-top: 0 !important;
margin-bottom: 0 !important;
padding-top: 0 !important;
padding-bottom: 0 !important;
line-height: 1.2 !important;
}
/* Make selectbox and other inputs more compact */
.stSidebar .stSelectbox, .stSidebar .stSlider, .stSidebar .stNumberInput {
margin-bottom: 5px !important;
padding-bottom: 0 !important;
padding-top: 0 !important;
}
/* Reduce all form element margins */
.stForm > div {margin-bottom: 5px !important;}
.stSidebar label {margin-bottom: 0 !important; line-height: 1.2 !important;}
</style>
""", unsafe_allow_html=True)
# Model options - more compact
st.markdown("##### Model Settings", help="Configure model options")
use_vision = st.checkbox("Use Vision Model", value=True,
help="For image files, use the vision model for improved analysis (may be slower)")
# Historical Context section with minimal spacing
st.markdown("##### Historical Context", help="Add historical context information")
# Historical period selector
historical_periods = [
"Select period (if known)",
"Pre-1700s",
"18th Century (1700s)",
"19th Century (1800s)",
"Early 20th Century (1900-1950)",
"Modern (Post 1950)"
]
selected_period = st.selectbox(
"Historical Period",
options=historical_periods,
index=0,
help="Select the time period of the document for better OCR processing"
)
# Document purpose selector
document_purposes = [
"Select purpose (if known)",
"Personal Letter/Correspondence",
"Official/Government Document",
"Business/Financial Record",
"Literary/Academic Work",
"News/Journalism",
"Religious Text",
"Legal Document"
]
selected_purpose = st.selectbox(
"Document Purpose",
options=document_purposes,
index=0,
help="Select the purpose or type of the document for better OCR processing"
)
# Custom prompt field
custom_prompt_text = ""
if selected_period != "Select period (if known)":
custom_prompt_text += f"This is a {selected_period} document. "
if selected_purpose != "Select purpose (if known)":
custom_prompt_text += f"It appears to be a {selected_purpose}. "
custom_prompt = st.text_area(
"Additional Context",
value=custom_prompt_text,
placeholder="Example: This document has unusual handwriting with cursive script. Please identify any mentioned locations and dates.",
height=150,
max_chars=500,
key="custom_analysis_instructions",
help="Powerful instructions field that impacts how the AI processes your document. Can request translations, format images correctly, extract specific information, or handle challenging documents. See the 'Additional Context Instructions & Examples' section below for more details."
)
# Enhanced instructions for Additional Context with more capabilities
with st.expander("Prompting Instructions"):
st.markdown("""
### How Additional Context Affects Processing
The "Additional Context" field provides instructions directly to the AI to influence how it processes your document. Use it to:
#### Document Understanding
- **Specify handwriting styles**: "This document uses old-fashioned cursive with numerous flourishes and abbreviations"
- **Identify language features**: "The text contains archaic spellings common in 18th century documents"
- **Highlight focus areas**: "Look for mentions of financial transactions or dates of travel"
#### Output Formatting & Languages
- **Request translations**: "After extracting the text, translate the content into Spanish"
- **Format image orientation**: "Ensure images are displayed in the same orientation as they appear in the document"
- **Format tables**: "Convert any tables in the document to structured format with clear columns"
#### Special Processing
- **Handle challenges**: "Some portions may be faded; the page edges contain handwritten notes"
- **Technical terms**: "This is a medical document with specialized terminology about surgical procedures"
- **Organization**: "Separate the letter content from the address blocks and signature"
#### Example Combinations
```
This is a handwritten letter from the 1850s. The writer uses archaic spellings and formal language.
Please preserve paragraph structure, identify any place names mentioned, and note any references
to historical events. Format any lists as bullet points.
```
""")
# Image preprocessing options with reduced spacing
st.markdown("##### Image Preprocessing", help="Options for enhancing images before OCR")
with st.expander("Preprocessing Options", expanded=False):
preprocessing_options = {}
# Document type selector - important for optimized processing
doc_type_options = ["standard", "handwritten", "typed", "printed"]
preprocessing_options["document_type"] = st.selectbox(
"Document Type",
options=doc_type_options,
index=0, # Default to standard
format_func=lambda x: x.capitalize(),
help="Select document type for optimized processing - choose 'Handwritten' for letters and manuscripts"
)
preprocessing_options["grayscale"] = st.checkbox("Convert to Grayscale",
help="Convert image to grayscale before OCR")
preprocessing_options["denoise"] = st.checkbox("Denoise Image",
help="Remove noise from the image")
preprocessing_options["contrast"] = st.slider("Adjust Contrast", -5, 5, 0,
help="Adjust image contrast (-5 to +5)")
# Add rotation options
rotation_options = [0, 90, 180, 270]
preprocessing_options["rotation"] = st.select_slider(
"Rotate Document",
options=rotation_options,
value=0,
format_func=lambda x: f"{x}Β° {'(No rotation)' if x == 0 else ''}",
help="Rotate the document to correct orientation"
)
# PDF options with consistent formatting
st.markdown("##### PDF Options", help="Settings for PDF documents")
with st.expander("PDF Settings", expanded=False):
pdf_dpi = st.slider("PDF Resolution (DPI)", 72, 300, 100,
help="Higher DPI gives better quality but slower processing. Try 100 for faster processing.")
max_pages = st.number_input("Maximum Pages to Process", 1, 20, 3,
help="Limit number of pages to process")
# Add PDF rotation option
rotation_options = [0, 90, 180, 270]
pdf_rotation = st.select_slider(
"Rotate PDF",
options=rotation_options,
value=0,
format_func=lambda x: f"{x}Β° {'(No rotation)' if x == 0 else ''}",
help="Rotate the PDF pages to correct orientation"
)
# Store PDF rotation separately instead of in preprocessing_options
# This prevents conflict with image preprocessing
# Previous Results tab content
with main_tab2:
st.markdown('<h2>Previous Results</h2>', unsafe_allow_html=True)
# Load custom CSS for Previous Results tab
from ui.layout import load_css
load_css()
# Display previous results if available
if not st.session_state.previous_results:
st.markdown("""
<div class="previous-results-container" style="text-align: center; padding: 40px 20px; background-color: #f0f2f6; border-radius: 8px;">
<div style="font-size: 48px; margin-bottom: 20px;">πŸ“„</div>
<h3 style="margin-bottom: 10px; font-weight: 600;">No Previous Results</h3>
<p style="font-size: 16px;">Process a document to see your results history saved here.</p>
</div>
""", unsafe_allow_html=True)
else:
# Create a container for the results list
st.markdown('<div class="previous-results-container">', unsafe_allow_html=True)
st.markdown(f'<h3>{len(st.session_state.previous_results)} Previous Results</h3>', unsafe_allow_html=True)
# Create two columns for filters and download buttons
filter_col, download_col = st.columns([2, 1])
with filter_col:
# Add filter options
filter_options = ["All Types"]
if any(result.get("file_name", "").lower().endswith(".pdf") for result in st.session_state.previous_results):
filter_options.append("PDF Documents")
if any(result.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png")) for result in st.session_state.previous_results):
filter_options.append("Images")
selected_filter = st.selectbox("Filter by Type:", filter_options)
with download_col:
# Add download all button for results
if len(st.session_state.previous_results) > 0:
try:
# Create buffer in memory instead of file on disk
import io
from ocr_utils import create_results_zip_in_memory
# Get zip data directly in memory
zip_data = create_results_zip_in_memory(st.session_state.previous_results)
st.download_button(
label="Download All Results",
data=zip_data,
file_name="all_ocr_results.zip",
mime="application/zip",
help="Download all previous results as a ZIP file containing HTML and JSON files"
)
except Exception as e:
st.error(f"Error creating download: {str(e)}")
st.info("Try with fewer results or individual downloads")
# Filter results based on selection
filtered_results = st.session_state.previous_results
if selected_filter == "PDF Documents":
filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith(".pdf")]
elif selected_filter == "Images":
filtered_results = [r for r in st.session_state.previous_results if r.get("file_name", "").lower().endswith((".jpg", ".jpeg", ".png"))]
# Show a message if no results match the filter
if not filtered_results:
st.markdown("""
<div style="text-align: center; padding: 20px; background-color: #f9f9f9; border-radius: 5px; margin: 20px 0;">
<p>No results match the selected filter.</p>
</div>
""", unsafe_allow_html=True)
# Display each result as a card
for i, result in enumerate(filtered_results):
# Determine file type icon
file_name = result.get("file_name", f"Document {i+1}")
file_type_lower = file_name.lower()
if file_type_lower.endswith(".pdf"):
icon = "πŸ“„"
elif file_type_lower.endswith((".jpg", ".jpeg", ".png", ".gif")):
icon = "πŸ–ΌοΈ"
else:
icon = "πŸ“"
# Create a card for each result
st.markdown(f"""
<div class="result-card">
<div class="result-header">
<div class="result-filename">{icon} {file_name}</div>
<div class="result-date">{result.get('timestamp', 'Unknown')}</div>
</div>
<div class="result-metadata">
<div class="result-tag">Languages: {', '.join(result.get('languages', ['Unknown']))}</div>
<div class="result-tag">Topics: {', '.join(result.get('topics', ['Unknown']))}</div>
</div>
""", unsafe_allow_html=True)
# Add view button inside the card with proper styling
st.markdown('<div class="result-action-button">', unsafe_allow_html=True)
if st.button(f"View Document", key=f"view_{i}"):
# Set the selected result in the session state
st.session_state.selected_previous_result = st.session_state.previous_results[i]
# Force a rerun to show the selected result
st.rerun()
st.markdown('</div>', unsafe_allow_html=True)
# Close the result card
st.markdown('</div>', unsafe_allow_html=True)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
# Display the selected result if available
if 'selected_previous_result' in st.session_state and st.session_state.selected_previous_result:
selected_result = st.session_state.selected_previous_result
# Create a styled container for the selected result
st.markdown(f"""
<div class="selected-result-container">
<div class="result-header" style="margin-bottom: 20px;">
<div class="selected-result-title">Selected Document: {selected_result.get('file_name', 'Unknown')}</div>
<div class="result-date">{selected_result.get('timestamp', '')}</div>
</div>
""", unsafe_allow_html=True)
# Display metadata in a styled way
meta_col1, meta_col2 = st.columns(2)
with meta_col1:
# Display document metadata
if 'languages' in selected_result:
languages = [lang for lang in selected_result['languages'] if lang is not None]
if languages:
st.write(f"**Languages:** {', '.join(languages)}")
if 'topics' in selected_result and selected_result['topics']:
st.write(f"**Topics:** {', '.join(selected_result['topics'])}")
with meta_col2:
# Display processing metadata
if 'limited_pages' in selected_result:
st.info(f"Processed {selected_result['limited_pages']['processed']} of {selected_result['limited_pages']['total']} pages")
if 'processing_time' in selected_result:
proc_time = selected_result['processing_time']
st.write(f"**Processing Time:** {proc_time:.1f}s")
# Create tabs for content display
has_images = selected_result.get('has_images', False)
if has_images:
view_tab1, view_tab2, view_tab3 = st.tabs(["Structured View", "Raw JSON", "With Images"])
else:
view_tab1, view_tab2 = st.tabs(["Structured View", "Raw JSON"])
with view_tab1:
# Display structured content
if 'ocr_contents' in selected_result and isinstance(selected_result['ocr_contents'], dict):
for section, content in selected_result['ocr_contents'].items():
if content and section not in ['error', 'raw_text', 'partial_text']: # Skip error and raw text sections
st.markdown(f"#### {section.replace('_', ' ').title()}")
if isinstance(content, str):
st.write(content)
elif isinstance(content, list):
for item in content:
if isinstance(item, str):
st.write(f"- {item}")
else:
st.write(f"- {str(item)}")
elif isinstance(content, dict):
for k, v in content.items():
st.write(f"**{k}:** {v}")
with view_tab2:
# Show the raw JSON with an option to download it
try:
st.json(selected_result)
except Exception as e:
st.error(f"Error displaying JSON: {str(e)}")
# Try a safer approach with string representation
st.code(str(selected_result))
# Add JSON download button
try:
json_str = json.dumps(selected_result, indent=2)
filename = selected_result.get('file_name', 'document').split('.')[0]
st.download_button(
label="Download JSON",
data=json_str,
file_name=f"{filename}_data.json",
mime="application/json"
)
except Exception as e:
st.error(f"Error creating JSON download: {str(e)}")
# Fallback to string representation for download
st.download_button(
label="Download as Text",
data=str(selected_result),
file_name=f"{filename}_data.txt",
mime="text/plain"
)
if has_images and 'pages_data' in selected_result:
with view_tab3:
# Display content with images in a nicely formatted way
pages_data = selected_result.get('pages_data', [])
# Process and display each page
for page_idx, page in enumerate(pages_data):
# Add a page header if multi-page
if len(pages_data) > 1:
st.markdown(f"### Page {page_idx + 1}")
# Create columns for better layout
if page.get('images'):
# Extract images for this page
images = page.get('images', [])
for img in images:
if 'image_base64' in img:
st.image(img['image_base64'], width=600)
# Display text content if available
text_content = page.get('markdown', '')
if text_content:
with st.expander("View Page Text", expanded=True):
st.markdown(text_content)
else:
# Just display text if no images
text_content = page.get('markdown', '')
if text_content:
st.markdown(text_content)
# Add page separator
if page_idx < len(pages_data) - 1:
st.markdown("---")
# Add HTML download button if images are available
from ocr_utils import create_html_with_images
html_content = create_html_with_images(selected_result)
filename = selected_result.get('file_name', 'document').split('.')[0]
st.download_button(
label="Download as HTML with Images",
data=html_content,
file_name=f"{filename}_with_images.html",
mime="text/html"
)
# Close the container
st.markdown('</div>', unsafe_allow_html=True)
# Add clear button outside the container with proper styling
col1, col2, col3 = st.columns([1, 1, 1])
with col2:
st.markdown('<div class="result-action-button" style="text-align: center;">', unsafe_allow_html=True)
if st.button("Close Selected Document", key="close_selected"):
# Clear the selected result from session state
del st.session_state.selected_previous_result
# Force a rerun to update the view
st.rerun()
st.markdown('</div>', unsafe_allow_html=True)
# About tab content
with main_tab3:
# Add a notice about local OCR fallback if available
fallback_notice = ""
if 'has_pytesseract' in locals() and has_pytesseract:
fallback_notice = """
**Local OCR Fallback:**
- Local OCR fallback using Tesseract is available if API rate limits are reached
- Provides basic text extraction when cloud OCR is unavailable
"""
st.markdown(f"""
### About Historical Document OCR
This application specializes in processing historical documents using [Mistral AI's Document OCR](https://docs.mistral.ai/capabilities/document/), which is particularly effective for handling challenging textual materials.
#### Document Processing Capabilities
- **Historical Images**: Process vintage photographs, scanned historical papers, manuscripts
- **Handwritten Documents**: Extract text from letters, journals, notes, and records
- **Multi-Page PDFs**: Process historical books, articles, and longer documents
- **Mixed Content**: Handle documents with both text and imagery
#### Key Features
- **Advanced Image Preprocessing**
- Grayscale conversion optimized for historical documents
- Denoising to remove artifacts and improve clarity
- Contrast adjustment to enhance faded text
- Document rotation for proper orientation
- **Document Analysis**
- Text extraction with `mistral-ocr-latest`
- Structured data extraction: dates, names, places, topics
- Multi-language support with automatic detection
- Handling of period-specific terminology and obsolete language
- **Flexible Output Formats**
- Structured view with organized content sections
- Developer JSON for integration with other applications
- Visual representation preserving original document layout
- Downloadable results in various formats
#### Historical Context
Add period-specific context to improve analysis:
- Historical period selection
- Document purpose identification
- Custom instructions for specialized terminology
#### Data Privacy
- All document processing happens through secure AI processing
- No documents are permanently stored on the server
- Results are only saved in your current session
{fallback_notice}
""")
with main_tab1:
if uploaded_file is not None:
# Check file size (cap at 50MB)
file_size_mb = len(uploaded_file.getvalue()) / (1024 * 1024)
if file_size_mb > 50:
with left_col:
st.error(f"File too large ({file_size_mb:.1f} MB). Maximum file size is 50MB.")
st.stop()
file_ext = Path(uploaded_file.name).suffix.lower()
# Process button - flush left with similar padding as file browser
with left_col:
process_button = st.button("Process Document")
# Empty container for progress indicators - will be filled during processing
# Positioned right after the process button for better visibility
progress_placeholder = st.empty()
# Image preprocessing preview - automatically show only the preprocessed version
if any(preprocessing_options.values()) and uploaded_file.type.startswith('image/'):
st.markdown("**Preprocessed Preview**")
try:
# Create a container for the preview to better control layout
with st.container():
processed_bytes = preprocess_image(uploaded_file.getvalue(), preprocessing_options)
# Use use_column_width=True for responsive design
st.image(io.BytesIO(processed_bytes), use_column_width=True)
# Show preprocessing metadata in a well-formatted caption
meta_items = []
if preprocessing_options.get("document_type", "standard") != "standard":
meta_items.append(f"Document type ({preprocessing_options['document_type']})")
if preprocessing_options.get("grayscale", False):
meta_items.append("Grayscale")
if preprocessing_options.get("denoise", False):
meta_items.append("Denoise")
if preprocessing_options.get("contrast", 0) != 0:
meta_items.append(f"Contrast ({preprocessing_options['contrast']})")
if preprocessing_options.get("rotation", 0) != 0:
meta_items.append(f"Rotation ({preprocessing_options['rotation']}Β°)")
# Only show "Applied:" if there are actual preprocessing steps
if meta_items:
meta_text = "Applied: " + ", ".join(meta_items)
st.caption(meta_text)
except Exception as e:
st.error(f"Error in preprocessing: {str(e)}")
st.info("Try using grayscale preprocessing for PNG images with transparency")
# Container for success message (will be filled after processing)
# No extra spacing needed as it will be managed programmatically
metadata_placeholder = st.empty()
# Results section
if process_button:
# Move the progress indicator reference to just below the button
progress_container = progress_placeholder
try:
# Get max_pages or default if not available
max_pages_value = max_pages if 'max_pages' in locals() else None
# Apply performance mode settings
if 'perf_mode' in locals():
if perf_mode == "Speed":
# Override settings for faster processing
if 'preprocessing_options' in locals():
preprocessing_options["denoise"] = False # Skip denoising for speed
if 'pdf_dpi' in locals() and file_ext.lower() == '.pdf':
pdf_dpi = min(pdf_dpi, 100) # Lower DPI for speed
# Process file with or without custom prompt
if custom_prompt and custom_prompt.strip():
# Process with custom instructions for the AI
with progress_placeholder.container():
progress_bar = st.progress(0)
status_text = st.empty()
status_text.markdown('<div class="processing-status-container">Processing with custom instructions...</div>', unsafe_allow_html=True)
progress_bar.progress(30)
# Special handling for PDF files with custom prompts
if file_ext.lower() == ".pdf":
# For PDFs with custom prompts, we use a special two-step process
with progress_placeholder.container():
status_text.markdown('<div class="processing-status-container">Using special PDF processing for custom instructions...</div>', unsafe_allow_html=True)
progress_bar.progress(40)
try:
# Step 1: Process without custom prompt to get OCR text
processor = StructuredOCR()
# First save the PDF to a temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp.write(uploaded_file.getvalue())
temp_path = tmp.name
# Process with NO custom prompt first
# Apply PDF rotation if specified
pdf_rotation_value = pdf_rotation if 'pdf_rotation' in locals() else 0
base_result = processor.process_file(
file_path=temp_path,
file_type="pdf",
use_vision=use_vision,
custom_prompt=None, # No custom prompt in first step
file_size_mb=len(uploaded_file.getvalue()) / (1024 * 1024),
pdf_rotation=pdf_rotation_value # Pass rotation value to processor
)
progress_bar.progress(70)
status_text.markdown('<div class="processing-status-container">Applying custom analysis to extracted text...</div>', unsafe_allow_html=True)
# Step 2: Apply custom prompt to the extracted text using text-only LLM
if 'ocr_contents' in base_result and isinstance(base_result['ocr_contents'], dict):
# Get text from OCR result
ocr_text = ""
for section, content in base_result['ocr_contents'].items():
if isinstance(content, str):
ocr_text += content + "\n\n"
elif isinstance(content, list):
for item in content:
if isinstance(item, str):
ocr_text += item + "\n"
ocr_text += "\n"
# Format the custom prompt for text-only processing
formatted_prompt = f"USER INSTRUCTIONS: {custom_prompt.strip()}\nPay special attention to these instructions and respond accordingly."
# Apply custom prompt to extracted text
enhanced_result = processor._extract_structured_data_text_only(ocr_text, uploaded_file.name, formatted_prompt)
# Merge results, keeping images from base_result
result = base_result.copy()
result['custom_prompt_applied'] = 'text_only'
# Update with enhanced analysis results, preserving image data
for key, value in enhanced_result.items():
if key not in ['raw_response_data', 'pages_data', 'has_images']:
result[key] = value
else:
# If no OCR content, just use the base result
result = base_result
result['custom_prompt_applied'] = 'failed'
# Clean up temp file
if os.path.exists(temp_path):
os.unlink(temp_path)
except Exception as e:
# If anything fails, revert to standard processing
st.warning(f"Special PDF processing failed. Falling back to standard method: {str(e)}")
result = process_file(uploaded_file, use_vision, {}, progress_container=progress_placeholder)
else:
# For non-PDF files, use normal processing with custom prompt
# Save the uploaded file to a temporary file with preprocessing
with tempfile.NamedTemporaryFile(delete=False, suffix=Path(uploaded_file.name).suffix) as tmp:
# Apply preprocessing if any options are selected
if any(preprocessing_options.values()):
# Apply performance mode settings
if 'perf_mode' in locals() and perf_mode == "Speed":
# Skip denoising for speed in preprocessing
speed_preprocessing = preprocessing_options.copy()
speed_preprocessing["denoise"] = False
processed_bytes = preprocess_image(uploaded_file.getvalue(), speed_preprocessing)
else:
processed_bytes = preprocess_image(uploaded_file.getvalue(), preprocessing_options)
tmp.write(processed_bytes)
else:
tmp.write(uploaded_file.getvalue())
temp_path = tmp.name
# Show progress
with progress_placeholder.container():
progress_bar.progress(50)
status_text.markdown('<div class="processing-status-container">Analyzing with custom instructions...</div>', unsafe_allow_html=True)
# Initialize OCR processor and process with custom prompt
processor = StructuredOCR()
# Format the custom prompt to ensure it has an impact
formatted_prompt = f"USER INSTRUCTIONS: {custom_prompt.strip()}\nPay special attention to these instructions and respond accordingly."
try:
result = processor.process_file(
file_path=temp_path,
file_type="image", # Always use image for non-PDFs
use_vision=use_vision,
custom_prompt=formatted_prompt,
file_size_mb=len(uploaded_file.getvalue()) / (1024 * 1024)
)
except Exception as e:
# For any error, fall back to standard processing
st.warning(f"Custom prompt processing failed. Falling back to standard processing: {str(e)}")
result = process_file(uploaded_file, use_vision, preprocessing_options, progress_container=progress_placeholder)
# Complete progress
with progress_placeholder.container():
progress_bar.progress(100)
status_text.markdown('<div class="processing-status-container">Processing complete!</div>', unsafe_allow_html=True)
time.sleep(0.8)
progress_placeholder.empty()
# Clean up temporary file
if os.path.exists(temp_path):
try:
os.unlink(temp_path)
except:
pass
else:
# Standard processing without custom prompt
result = process_file(uploaded_file, use_vision, preprocessing_options, progress_container=progress_placeholder)
# Document results will be shown in the right column
with right_col:
# Add Document Metadata section header
st.subheader("Document Metadata")
# Create metadata card with standard styling
metadata_html = '<div class="metadata-card" style="padding:15px; margin-bottom:20px;">'
# File info
metadata_html += f'<p><strong>File Name:</strong> {result.get("file_name", uploaded_file.name)}</p>'
# Info about limited pages
if 'limited_pages' in result:
metadata_html += f'<p style="padding:8px; border-radius:4px;"><strong>Pages:</strong> {result["limited_pages"]["processed"]} of {result["limited_pages"]["total"]} processed</p>'
# Languages
if 'languages' in result:
languages = [lang for lang in result['languages'] if lang is not None]
if languages:
metadata_html += f'<p><strong>Languages:</strong> {", ".join(languages)}</p>'
# Topics
if 'topics' in result and result['topics']:
metadata_html += f'<p><strong>Topics:</strong> {", ".join(result["topics"])}</p>'
# Processing time
if 'processing_time' in result:
proc_time = result['processing_time']
metadata_html += f'<p><strong>Processing Time:</strong> {proc_time:.1f}s</p>'
# Close the metadata card
metadata_html += '</div>'
# Render the metadata HTML
st.markdown(metadata_html, unsafe_allow_html=True)
# Add content section heading - using standard subheader
st.subheader("Document Content")
# Start document content div with consistent styling class
st.markdown('<div class="document-content" style="margin-top:10px;">', unsafe_allow_html=True)
if 'ocr_contents' in result:
# Check for has_images in the result
has_images = result.get('has_images', False)
# Create tabs for different views
if has_images:
view_tab1, view_tab2, view_tab3 = st.tabs(["Structured View", "Raw JSON", "With Images"])
else:
view_tab1, view_tab2 = st.tabs(["Structured View", "Raw JSON"])
with view_tab1:
# Display in a more user-friendly format based on the content structure
html_content = ""
if isinstance(result['ocr_contents'], dict):
for section, content in result['ocr_contents'].items():
if content: # Only display non-empty sections
# Add consistent styling for each section
section_title = f'<h4 style="font-family: Georgia, serif; font-size: 18px; margin-top: 20px; margin-bottom: 10px;">{section.replace("_", " ").title()}</h4>'
html_content += section_title
if isinstance(content, str):
# Optimize by using a expander for very long content
if len(content) > 1000:
# Format content for long text - bold everything after "... that"
preview_content = content[:1000] + "..." if len(content) > 1000 else content
if "... that" in content:
# For the preview (first 1000 chars)
if "... that" in preview_content:
parts = preview_content.split("... that", 1)
formatted_preview = f"{parts[0]}... that<strong>{parts[1]}</strong>"
html_content += f"<p style=\"font-size:16px;\">{formatted_preview}</p>"
else:
html_content += f"<p style=\"font-size:16px; font-weight:normal;\">{preview_content}</p>"
# For the full content in expander
parts = content.split("... that", 1)
formatted_full = f"{parts[0]}... that**{parts[1]}**"
st.markdown(f"#### {section.replace('_', ' ').title()}")
with st.expander("Show full content"):
st.markdown(formatted_full)
else:
html_content += f"<p style=\"font-size:16px; font-weight:normal;\">{preview_content}</p>"
st.markdown(f"#### {section.replace('_', ' ').title()}")
with st.expander("Show full content"):
st.write(content)
else:
# Format content - bold everything after "... that"
if "... that" in content:
parts = content.split("... that", 1)
formatted_content = f"{parts[0]}... that<strong>{parts[1]}</strong>"
html_content += f"<p style=\"font-size:16px;\">{formatted_content}</p>"
st.markdown(f"#### {section.replace('_', ' ').title()}")
st.markdown(f"{parts[0]}... that**{parts[1]}**")
else:
html_content += f"<p style=\"font-size:16px; font-weight:normal;\">{content}</p>"
st.markdown(f"#### {section.replace('_', ' ').title()}")
st.write(content)
elif isinstance(content, list):
html_list = "<ul>"
st.markdown(f"#### {section.replace('_', ' ').title()}")
# Limit display for very long lists
if len(content) > 20:
with st.expander(f"Show all {len(content)} items"):
for item in content:
if isinstance(item, str):
html_list += f"<li>{item}</li>"
st.write(f"- {item}")
elif isinstance(item, dict):
try:
st.json(item)
except Exception as e:
st.error(f"Error displaying JSON: {str(e)}")
st.code(str(item))
else:
for item in content:
if isinstance(item, str):
html_list += f"<li>{item}</li>"
st.write(f"- {item}")
elif isinstance(item, dict):
try:
st.json(item)
except Exception as e:
st.error(f"Error displaying JSON: {str(e)}")
st.code(str(item))
html_list += "</ul>"
html_content += html_list
elif isinstance(content, dict):
html_dict = "<dl>"
st.markdown(f"#### {section.replace('_', ' ').title()}")
for k, v in content.items():
html_dict += f"<dt>{k}</dt><dd>{v}</dd>"
st.write(f"**{k}:** {v}")
html_dict += "</dl>"
html_content += html_dict
# Add download button in a smaller section
with st.expander("Export Content"):
# Get original filename without extension
original_name = Path(result.get('file_name', uploaded_file.name)).stem
# HTML download button
html_bytes = html_content.encode()
st.download_button(
label="Download as HTML",
data=html_bytes,
file_name=f"{original_name}_processed.html",
mime="text/html"
)
with view_tab2:
# Show the raw JSON for developers, with an expander for large results
if len(json.dumps(result)) > 5000:
with st.expander("View full JSON"):
try:
st.json(result)
except Exception as e:
st.error(f"Error displaying JSON: {str(e)}")
# Fallback to string representation
st.code(str(result))
else:
try:
st.json(result)
except Exception as e:
st.error(f"Error displaying JSON: {str(e)}")
# Fallback to string representation
st.code(str(result))
if has_images and 'pages_data' in result:
with view_tab3:
# Use pages_data directly instead of raw_response
try:
# Use the serialized pages data
pages_data = result.get('pages_data', [])
if not pages_data:
st.warning("No image data found in the document.")
st.stop()
# Construct markdown from pages_data directly
from ocr_utils import replace_images_in_markdown
combined_markdown = ""
for page in pages_data:
page_markdown = page.get('markdown', '')
images = page.get('images', [])
# Create image dictionary
image_dict = {}
for img in images:
if 'id' in img and 'image_base64' in img:
image_dict[img['id']] = img['image_base64']
# Replace image references in markdown
if page_markdown and image_dict:
page_markdown = replace_images_in_markdown(page_markdown, image_dict)
combined_markdown += page_markdown + "\n\n---\n\n"
if not combined_markdown:
st.warning("No content with images found.")
st.stop()
# Add CSS for better image handling
st.markdown("""
<style>
.image-container {
margin: 20px 0;
text-align: center;
}
.markdown-text-container {
padding: 10px;
background-color: #f9f9f9;
border-radius: 5px;
}
.markdown-text-container img {
margin: 15px auto;
max-width: 90%;
max-height: 500px;
object-fit: contain;
border: 1px solid #ddd;
border-radius: 4px;
display: block;
}
.markdown-text-container p {
margin-bottom: 16px;
line-height: 1.6;
font-family: Georgia, serif;
}
.page-break {
border-top: 1px solid #ddd;
margin: 20px 0;
padding-top: 20px;
}
.page-text-content {
margin-bottom: 20px;
}
.text-block {
background-color: #fff;
padding: 15px;
border-radius: 4px;
border-left: 3px solid #546e7a;
margin-bottom: 15px;
color: #333;
}
.text-block p {
margin: 8px 0;
color: #333;
}
</style>
""", unsafe_allow_html=True)
# Process and display content with images properly
import re
# Process each page separately
pages_content = []
# Check if this is from a PDF processed through pdf2image
is_pdf2image = result.get('pdf_processing_method') == 'pdf2image'
for i, page in enumerate(pages_data):
page_markdown = page.get('markdown', '')
images = page.get('images', [])
if not page_markdown:
continue
# Create image dictionary
image_dict = {}
for img in images:
if 'id' in img and 'image_base64' in img:
image_dict[img['id']] = img['image_base64']
# Create HTML content for this page
page_html = f"<h3>Page {i+1}</h3>" if i > 0 else ""
# Display the raw text content first to ensure it's visible
page_html += f"<div class='page-text-content'>"
# Special handling for PDF2image processed documents
if is_pdf2image and i == 0 and 'ocr_contents' in result:
# Display all structured content from OCR for PDFs
page_html += "<div class='text-block pdf-content'>"
# Check if custom prompt was applied
if result.get('custom_prompt_applied') == 'text_only':
page_html += "<div class='prompt-info'><i>Custom analysis applied using text-only processing</i></div>"
ocr_contents = result.get('ocr_contents', {})
# Get a sorted list of sections to ensure consistent order
section_keys = sorted(ocr_contents.keys())
# Place important sections first
priority_sections = ['title', 'subtitle', 'header', 'publication', 'date', 'content', 'main_text']
for important in priority_sections:
if important in ocr_contents and important in section_keys:
section_keys.remove(important)
section_keys.insert(0, important)
for section in section_keys:
content = ocr_contents[section]
if section in ['raw_text', 'error', 'partial_text']:
continue # Skip these fields
section_title = section.replace('_', ' ').title()
page_html += f"<h4>{section_title}</h4>"
if isinstance(content, str):
# Convert newlines to <br> tags
content_html = content.replace('\n', '<br>')
page_html += f"<p>{content_html}</p>"
elif isinstance(content, list):
page_html += "<ul>"
for item in content:
if isinstance(item, str):
page_html += f"<li>{item}</li>"
elif isinstance(item, dict):
page_html += "<li>"
for k, v in item.items():
page_html += f"<strong>{k}:</strong> {v}<br>"
page_html += "</li>"
else:
page_html += f"<li>{str(item)}</li>"
page_html += "</ul>"
elif isinstance(content, dict):
for k, v in content.items():
if isinstance(v, str):
page_html += f"<p><strong>{k}:</strong> {v}</p>"
elif isinstance(v, list):
page_html += f"<p><strong>{k}:</strong></p><ul>"
for item in v:
page_html += f"<li>{item}</li>"
page_html += "</ul>"
else:
page_html += f"<p><strong>{k}:</strong> {str(v)}</p>"
page_html += "</div>"
else:
# Standard processing for regular documents
# Get all text content that isn't an image and add it first
text_content = []
for line in page_markdown.split("\n"):
if not re.search(r'!\[(.*?)\]\((.*?)\)', line) and line.strip():
text_content.append(line)
# Add the text content as a block
if text_content:
page_html += f"<div class='text-block'>"
for line in text_content:
page_html += f"<p>{line}</p>"
page_html += "</div>"
page_html += "</div>"
# Then add images separately
for line in page_markdown.split("\n"):
# Handle image lines
img_match = re.search(r'!\[(.*?)\]\((.*?)\)', line)
if img_match:
alt_text = img_match.group(1)
img_ref = img_match.group(2)
# Get the base64 data for this image ID
img_data = image_dict.get(img_ref, "")
if img_data:
img_html = f'<div class="image-container"><img src="{img_data}" alt="{alt_text}"></div>'
page_html += img_html
# Add page separator if not the last page
if i < len(pages_data) - 1:
page_html += '<div class="page-break"></div>'
pages_content.append(page_html)
# Combine all pages HTML
html_content = "\n".join(pages_content)
# Wrap the content in a div with the class for styling
st.markdown(f"""
<div class="markdown-text-container">
{html_content}
</div>
""", unsafe_allow_html=True)
# Create download HTML content
download_html = f"""
<html>
<head>
<style>
body {{
font-family: Georgia, serif;
line-height: 1.7;
margin: 0 auto;
max-width: 800px;
padding: 20px;
}}
img {{
max-width: 90%;
max-height: 500px;
object-fit: contain;
margin: 20px auto;
display: block;
border: 1px solid #ddd;
border-radius: 4px;
}}
.image-container {{
margin: 20px 0;
text-align: center;
}}
.page-break {{
border-top: 1px solid #ddd;
margin: 40px 0;
padding-top: 40px;
}}
h3 {{
color: #333;
border-bottom: 1px solid #eee;
padding-bottom: 10px;
}}
p {{
margin: 12px 0;
}}
.page-text-content {{
margin-bottom: 20px;
}}
.text-block {{
background-color: #f9f9f9;
padding: 15px;
border-radius: 4px;
border-left: 3px solid #546e7a;
margin-bottom: 15px;
color: #333;
}}
.text-block p {{
margin: 8px 0;
color: #333;
}}
</style>
</head>
<body>
<div class="markdown-text-container">
{html_content}
</div>
</body>
</html>
"""
# Get original filename without extension
original_name = Path(result.get('file_name', uploaded_file.name)).stem
# Add download button as an expander to prevent page reset
with st.expander("Download Document with Images"):
st.markdown("Click the button below to download the document with embedded images")
st.download_button(
label="Download as HTML",
data=download_html,
file_name=f"{original_name}_with_images.html",
mime="text/html",
key="download_with_images_button"
)
except Exception as e:
st.error(f"Could not display document with images: {str(e)}")
st.info("Try refreshing or processing the document again.")
if 'ocr_contents' not in result:
st.error("No OCR content was extracted from the document.")
# Close document content div
st.markdown('</div>', unsafe_allow_html=True)
# Show a compact success message without extra container space
metadata_placeholder.success("**Document processed successfully**")
# Store the result in the previous results list
# Add timestamp to result for history tracking
result_copy = result.copy()
result_copy['timestamp'] = datetime.now().strftime("%Y-%m-%d %H:%M")
# Add to session state, keeping the most recent 20 results
st.session_state.previous_results.insert(0, result_copy)
if len(st.session_state.previous_results) > 20:
st.session_state.previous_results = st.session_state.previous_results[:20]
except Exception as e:
st.error(f"Error processing document: {str(e)}")
else:
# Empty placeholder - we've moved the upload instruction to the file_uploader
# Show example images in a simpler layout
st.subheader("Example Documents")
# Add a simplified info message about examples
st.markdown("""
This app can process various historical documents:
- Historical photographs, maps, and manuscripts
- Handwritten letters and documents
- Printed books and articles
- Multi-page PDFs
Upload your own document to get started or explore the 'About' tab for more information.
""")
# Display a direct message about sample documents
st.info("Sample documents are available in the input directory. Upload a document to begin analysis.")# Minor update