Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -32,6 +32,13 @@ from langchain.chains import ConversationalRetrievalChain
|
|
32 |
# from langchain.llms import HuggingFaceHub
|
33 |
from langchain_community.llms import HuggingFaceHub
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
##################################################################################
|
36 |
def extract_pdf_text(pdf_docs):
|
37 |
text = ""
|
@@ -102,17 +109,21 @@ def prepare_conversation(vectorstore):
|
|
102 |
def process_user_question(user_question):
|
103 |
|
104 |
print('process_user_question called: \n')
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
if user_question == None :
|
106 |
print('question is null')
|
107 |
return
|
108 |
if user_question == '' :
|
109 |
print('question is blank')
|
110 |
return
|
111 |
-
|
112 |
if st == None :
|
113 |
print('session is null')
|
114 |
return
|
115 |
-
|
116 |
if st.session_state == None :
|
117 |
print('session STATE is null')
|
118 |
return
|
@@ -133,12 +144,12 @@ def process_user_question(user_question):
|
|
133 |
|
134 |
for i, message in enumerate(st.session_state.chat_history):
|
135 |
|
136 |
-
# Scrolling
|
|
|
137 |
#
|
138 |
-
print('results_size on msg: ', results_size, i, ( results_size -
|
139 |
-
if results_size >
|
140 |
-
if i < ( results_size -
|
141 |
-
print( 'skipped line', i)
|
142 |
continue
|
143 |
|
144 |
if i % 2 == 0:
|
@@ -205,7 +216,7 @@ def main():
|
|
205 |
st.header(f"Pennwick File Analyzer")
|
206 |
|
207 |
user_question = None
|
208 |
-
user_question = st.text_input("Ask the
|
209 |
if user_question != None:
|
210 |
print( 'calling process question', user_question)
|
211 |
process_user_question(user_question)
|
@@ -249,6 +260,8 @@ def main():
|
|
249 |
# # create conversation chain
|
250 |
st.session_state.conversation = prepare_conversation(vectorstore)
|
251 |
|
|
|
|
|
252 |
# Mission Complete!
|
253 |
global_later = datetime.now()
|
254 |
st.write("Files Vectorized - Total EXECUTION Time =",
|
|
|
32 |
# from langchain.llms import HuggingFaceHub
|
33 |
from langchain_community.llms import HuggingFaceHub
|
34 |
|
35 |
+
##################################################################################
|
36 |
+
# Admin flags
|
37 |
+
DISPLAY_DIALOG_LINES=6
|
38 |
+
|
39 |
+
SESSION_STARTED = False
|
40 |
+
|
41 |
+
|
42 |
##################################################################################
|
43 |
def extract_pdf_text(pdf_docs):
|
44 |
text = ""
|
|
|
109 |
def process_user_question(user_question):
|
110 |
|
111 |
print('process_user_question called: \n')
|
112 |
+
|
113 |
+
if (! SESSION_STARTED):
|
114 |
+
print('No Session')
|
115 |
+
st.write( 'Please upload and analyze your PDF files first!')
|
116 |
+
return
|
117 |
+
|
118 |
if user_question == None :
|
119 |
print('question is null')
|
120 |
return
|
121 |
if user_question == '' :
|
122 |
print('question is blank')
|
123 |
return
|
|
|
124 |
if st == None :
|
125 |
print('session is null')
|
126 |
return
|
|
|
127 |
if st.session_state == None :
|
128 |
print('session STATE is null')
|
129 |
return
|
|
|
144 |
|
145 |
for i, message in enumerate(st.session_state.chat_history):
|
146 |
|
147 |
+
# Scrolling does not display the last printed line,
|
148 |
+
# so only print the last 6 lines
|
149 |
#
|
150 |
+
print('results_size on msg: ', results_size, i, ( results_size - DISPLAY_DIALOG_LINES ) )
|
151 |
+
if results_size > DISPLAY_DIALOG_LINES:
|
152 |
+
if i < ( results_size - DISPLAY_DIALOG_LINES ):
|
|
|
153 |
continue
|
154 |
|
155 |
if i % 2 == 0:
|
|
|
216 |
st.header(f"Pennwick File Analyzer")
|
217 |
|
218 |
user_question = None
|
219 |
+
user_question = st.text_input("Ask the Open Source - Flan-T5 Model a question about your uploaded documents:")
|
220 |
if user_question != None:
|
221 |
print( 'calling process question', user_question)
|
222 |
process_user_question(user_question)
|
|
|
260 |
# # create conversation chain
|
261 |
st.session_state.conversation = prepare_conversation(vectorstore)
|
262 |
|
263 |
+
SESSION_STARTED = True
|
264 |
+
|
265 |
# Mission Complete!
|
266 |
global_later = datetime.now()
|
267 |
st.write("Files Vectorized - Total EXECUTION Time =",
|