Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -33,7 +33,7 @@ from langchain.chains import ConversationalRetrievalChain
|
|
33 |
# from langchain.llms import HuggingFaceHub
|
34 |
from langchain_community.llms import HuggingFaceHub
|
35 |
|
36 |
-
def
|
37 |
text = ""
|
38 |
for pdf in pdf_docs:
|
39 |
pdf_reader = PdfReader(pdf)
|
@@ -43,7 +43,7 @@ def get_pdf_text(pdf_docs):
|
|
43 |
|
44 |
# Chunk size and overlap must not exceed the models capacity!
|
45 |
#
|
46 |
-
def
|
47 |
text_splitter = CharacterTextSplitter(
|
48 |
separator="\n",
|
49 |
chunk_size=800, # 1000
|
@@ -54,7 +54,7 @@ def get_text_chunks(text):
|
|
54 |
return chunks
|
55 |
|
56 |
|
57 |
-
def
|
58 |
|
59 |
st.write('Here in vector store....', unsafe_allow_html=True)
|
60 |
# embeddings = OpenAIEmbeddings()
|
@@ -81,7 +81,7 @@ def get_vectorstore(text_chunks):
|
|
81 |
|
82 |
return vectorstore
|
83 |
|
84 |
-
def
|
85 |
# llm = ChatOpenAI()
|
86 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
87 |
# google/bigbird-roberta-base facebook/bart-large
|
@@ -96,13 +96,12 @@ def get_conversation_chain(vectorstore):
|
|
96 |
)
|
97 |
return conversation_chain
|
98 |
|
99 |
-
def
|
100 |
|
101 |
response = st.session_state.conversation({'question': user_question})
|
102 |
# response = st.session_state.conversation({'summarization': user_question})
|
103 |
st.session_state.chat_history = response['chat_history']
|
104 |
|
105 |
-
|
106 |
# st.empty()
|
107 |
|
108 |
for i, message in enumerate(st.session_state.chat_history):
|
@@ -114,17 +113,14 @@ def handle_userinput(user_question):
|
|
114 |
st.write(bot_template.replace(
|
115 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
def main():
|
121 |
|
122 |
-
|
123 |
-
|
124 |
# load_dotenv()
|
125 |
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:")
|
126 |
-
im = Image.open("robot_icon.ico")
|
127 |
-
st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im )
|
|
|
128 |
|
129 |
st.write(css, unsafe_allow_html=True)
|
130 |
|
@@ -138,7 +134,7 @@ def main():
|
|
138 |
|
139 |
user_question = st.text_input("Ask the Model a question about your uploaded documents:")
|
140 |
if user_question:
|
141 |
-
|
142 |
|
143 |
# st.write( user_template, unsafe_allow_html=True)
|
144 |
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
|
@@ -164,18 +160,18 @@ def main():
|
|
164 |
st.write("Vectorizing Files - Current Time =", global_current_time)
|
165 |
|
166 |
# get pdf text
|
167 |
-
raw_text =
|
168 |
# st.write(raw_text)
|
169 |
|
170 |
# # get the text chunks
|
171 |
-
text_chunks =
|
172 |
# st.write(text_chunks)
|
173 |
|
174 |
# # create vector store
|
175 |
-
vectorstore =
|
176 |
|
177 |
# # create conversation chain
|
178 |
-
st.session_state.conversation =
|
179 |
|
180 |
# Mission Complete!
|
181 |
global_later = datetime.now()
|
|
|
33 |
# from langchain.llms import HuggingFaceHub
|
34 |
from langchain_community.llms import HuggingFaceHub
|
35 |
|
36 |
+
def extract_pdf_text(pdf_docs):
|
37 |
text = ""
|
38 |
for pdf in pdf_docs:
|
39 |
pdf_reader = PdfReader(pdf)
|
|
|
43 |
|
44 |
# Chunk size and overlap must not exceed the models capacity!
|
45 |
#
|
46 |
+
def extract_bitesize_pieces(text):
|
47 |
text_splitter = CharacterTextSplitter(
|
48 |
separator="\n",
|
49 |
chunk_size=800, # 1000
|
|
|
54 |
return chunks
|
55 |
|
56 |
|
57 |
+
def prepare_embedding_vectors(text_chunks):
|
58 |
|
59 |
st.write('Here in vector store....', unsafe_allow_html=True)
|
60 |
# embeddings = OpenAIEmbeddings()
|
|
|
81 |
|
82 |
return vectorstore
|
83 |
|
84 |
+
def prepare_conversation(vectorstore):
|
85 |
# llm = ChatOpenAI()
|
86 |
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
|
87 |
# google/bigbird-roberta-base facebook/bart-large
|
|
|
96 |
)
|
97 |
return conversation_chain
|
98 |
|
99 |
+
def process_user_question(user_question):
|
100 |
|
101 |
response = st.session_state.conversation({'question': user_question})
|
102 |
# response = st.session_state.conversation({'summarization': user_question})
|
103 |
st.session_state.chat_history = response['chat_history']
|
104 |
|
|
|
105 |
# st.empty()
|
106 |
|
107 |
for i, message in enumerate(st.session_state.chat_history):
|
|
|
113 |
st.write(bot_template.replace(
|
114 |
"{{MSG}}", message.content), unsafe_allow_html=True)
|
115 |
|
116 |
+
###################################################################################
|
|
|
|
|
117 |
def main():
|
118 |
|
|
|
|
|
119 |
# load_dotenv()
|
120 |
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=":books:")
|
121 |
+
# im = Image.open("robot_icon.ico")
|
122 |
+
# st.set_page_config(page_title="Pennwick PDF Analyzer", page_icon=im )
|
123 |
+
st.set_page_config(page_title="Pennwick PDF Analyzer")
|
124 |
|
125 |
st.write(css, unsafe_allow_html=True)
|
126 |
|
|
|
134 |
|
135 |
user_question = st.text_input("Ask the Model a question about your uploaded documents:")
|
136 |
if user_question:
|
137 |
+
process_user_question(user_question)
|
138 |
|
139 |
# st.write( user_template, unsafe_allow_html=True)
|
140 |
# st.write(user_template.replace( "{{MSG}}", "Hello robot!"), unsafe_allow_html=True)
|
|
|
160 |
st.write("Vectorizing Files - Current Time =", global_current_time)
|
161 |
|
162 |
# get pdf text
|
163 |
+
raw_text = extract_pdf_text(pdf_docs)
|
164 |
# st.write(raw_text)
|
165 |
|
166 |
# # get the text chunks
|
167 |
+
text_chunks = extract_bitesize_pieces(raw_text)
|
168 |
# st.write(text_chunks)
|
169 |
|
170 |
# # create vector store
|
171 |
+
vectorstore = prepare_embedding_vectors(text_chunks)
|
172 |
|
173 |
# # create conversation chain
|
174 |
+
st.session_state.conversation = prepare_conversation(vectorstore)
|
175 |
|
176 |
# Mission Complete!
|
177 |
global_later = datetime.now()
|