Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import time
|
2 |
import os
|
|
|
3 |
import gradio as gr
|
4 |
|
5 |
import torch
|
@@ -19,7 +20,7 @@ if has_cuda:
|
|
19 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
20 |
device = "cuda"
|
21 |
else:
|
22 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
23 |
device = "cpu"
|
24 |
|
25 |
pipe.to(device)
|
@@ -33,6 +34,8 @@ tokenizer = AutoTokenizer.from_pretrained(SAVED_CHECKPOINT)
|
|
33 |
|
34 |
summarizer = pipeline("summarization")
|
35 |
|
|
|
|
|
36 |
def break_until_dot(txt):
|
37 |
return txt.rsplit('.', 1)[0] + '.'
|
38 |
|
@@ -42,7 +45,8 @@ def generate(prompt):
|
|
42 |
|
43 |
outputs = model.generate(
|
44 |
input_ids=input_ids,
|
45 |
-
max_length=
|
|
|
46 |
temperature=0.7,
|
47 |
num_return_sequences=3,
|
48 |
do_sample=True
|
@@ -57,22 +61,22 @@ def generate_story(prompt):
|
|
57 |
summary = break_until_dot(summary)
|
58 |
return story, summary, gr.update(visible=True)
|
59 |
|
60 |
-
def on_change_event(app_state
|
61 |
-
|
62 |
-
if app_state and app_state['running']:
|
63 |
img = app_state['img']
|
64 |
step = app_state['step']
|
65 |
label = f'Reconstructed image from the latent state at step {step}'
|
|
|
66 |
return gr.update(value=img, label=label)
|
67 |
else:
|
68 |
-
return
|
69 |
|
70 |
with gr.Blocks() as demo:
|
71 |
|
72 |
def generate_image(prompt, inference_steps, app_state):
|
73 |
app_state['running'] = True
|
74 |
def callback(step, ts, latents):
|
75 |
-
print (f'In Callback on {step}!')
|
76 |
latents = 1 / 0.18215 * latents
|
77 |
res = pipe.vae.decode(latents).sample
|
78 |
res = (res / 2 + 0.5).clamp(0, 1)
|
@@ -80,9 +84,10 @@ with gr.Blocks() as demo:
|
|
80 |
res = pipe.numpy_to_pil(res)[0]
|
81 |
app_state['img'] = res
|
82 |
app_state['step'] = step
|
|
|
83 |
|
84 |
prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration'
|
85 |
-
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=
|
86 |
app_state['running'] = False
|
87 |
return gr.update(value=img.images[0], label='Generated image')
|
88 |
|
@@ -103,7 +108,7 @@ with gr.Blocks() as demo:
|
|
103 |
img_description = gr.Markdown('Image generation take some time'
|
104 |
' but here you can see the what is generated from the latent state of the diffuser every few steps.'
|
105 |
' Usually there is a significant improvement around step 15, that yields much better result')
|
106 |
-
image = gr.Image(label='Illustration for your story',
|
107 |
|
108 |
inference_steps = gr.Slider(5, 30,
|
109 |
value=15,
|
@@ -115,15 +120,12 @@ with gr.Blocks() as demo:
|
|
115 |
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
116 |
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image)
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
# dep = demo.load(on_change_event, None, None, every=1)
|
122 |
-
# eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1, cancels=[dep])
|
123 |
-
inference_steps.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=1)
|
124 |
|
125 |
|
126 |
if READ_TOKEN:
|
127 |
demo.queue().launch()
|
128 |
else:
|
129 |
-
demo.queue().launch(share=True, debug=True)
|
|
|
1 |
import time
|
2 |
import os
|
3 |
+
import PIL
|
4 |
import gradio as gr
|
5 |
|
6 |
import torch
|
|
|
20 |
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=READ_TOKEN)
|
21 |
device = "cuda"
|
22 |
else:
|
23 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, use_auth_token=READ_TOKEN)
|
24 |
device = "cpu"
|
25 |
|
26 |
pipe.to(device)
|
|
|
34 |
|
35 |
summarizer = pipeline("summarization")
|
36 |
|
37 |
+
#######################################################
|
38 |
+
|
39 |
def break_until_dot(txt):
|
40 |
return txt.rsplit('.', 1)[0] + '.'
|
41 |
|
|
|
45 |
|
46 |
outputs = model.generate(
|
47 |
input_ids=input_ids,
|
48 |
+
max_length=120,
|
49 |
+
min_length=50,
|
50 |
temperature=0.7,
|
51 |
num_return_sequences=3,
|
52 |
do_sample=True
|
|
|
61 |
summary = break_until_dot(summary)
|
62 |
return story, summary, gr.update(visible=True)
|
63 |
|
64 |
+
def on_change_event(app_state):
|
65 |
+
if app_state and app_state['running'] and app_state['img']:
|
|
|
66 |
img = app_state['img']
|
67 |
step = app_state['step']
|
68 |
label = f'Reconstructed image from the latent state at step {step}'
|
69 |
+
print(f'Updating the image:! {app_state}')
|
70 |
return gr.update(value=img, label=label)
|
71 |
else:
|
72 |
+
return gr.update()
|
73 |
|
74 |
with gr.Blocks() as demo:
|
75 |
|
76 |
def generate_image(prompt, inference_steps, app_state):
|
77 |
app_state['running'] = True
|
78 |
def callback(step, ts, latents):
|
79 |
+
print (f'In Callback on {step} {ts} !')
|
80 |
latents = 1 / 0.18215 * latents
|
81 |
res = pipe.vae.decode(latents).sample
|
82 |
res = (res / 2 + 0.5).clamp(0, 1)
|
|
|
84 |
res = pipe.numpy_to_pil(res)[0]
|
85 |
app_state['img'] = res
|
86 |
app_state['step'] = step
|
87 |
+
print (f'In Callback on {app_state} Done!')
|
88 |
|
89 |
prompt = prompt + ' masterpiece charcoal pencil art lord of the rings illustration'
|
90 |
+
img = pipe(prompt, height=512, width=512, num_inference_steps=inference_steps, callback=callback, callback_steps=2)
|
91 |
app_state['running'] = False
|
92 |
return gr.update(value=img.images[0], label='Generated image')
|
93 |
|
|
|
108 |
img_description = gr.Markdown('Image generation take some time'
|
109 |
' but here you can see the what is generated from the latent state of the diffuser every few steps.'
|
110 |
' Usually there is a significant improvement around step 15, that yields much better result')
|
111 |
+
image = gr.Image(label='Illustration for your story', show_label=True)
|
112 |
|
113 |
inference_steps = gr.Slider(5, 30,
|
114 |
value=15,
|
|
|
120 |
bt_make_text.click(fn=generate_story, inputs=prompt, outputs=[story, summary, bt_make_image])
|
121 |
bt_make_image.click(fn=generate_image, inputs=[summary, inference_steps, app_state], outputs=image)
|
122 |
|
123 |
+
eventslider = gr.Slider(visible=False)
|
124 |
+
dep = demo.load(on_change_event, app_state, image, every=10)
|
125 |
+
eventslider.change(fn=on_change_event, inputs=[app_state], outputs=[image], every=10, cancels=[dep])
|
|
|
|
|
|
|
126 |
|
127 |
|
128 |
if READ_TOKEN:
|
129 |
demo.queue().launch()
|
130 |
else:
|
131 |
+
demo.queue().launch(share=True, debug=True)
|