Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
•
e831b10
1
Parent(s):
7e0d59b
Update main.py
Browse files- README.md +1 -1
- app.py +151 -78
- docs/test2.txt +2 -0
- main.py +50 -0
- requirements-freeze.txt +179 -0
- requirements-win10-cpu.txt +33 -0
- requirements.txt +2 -2
README.md
CHANGED
@@ -5,7 +5,7 @@ colorFrom: green
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.33.1
|
8 |
-
app_file:
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
|
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
sdk_version: 3.33.1
|
8 |
+
app_file: main.py
|
9 |
pinned: false
|
10 |
license: mit
|
11 |
---
|
app.py
CHANGED
@@ -19,7 +19,7 @@ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=20
|
|
19 |
texts = text_splitter.split_documents(docs)
|
20 |
|
21 |
model_name = "hkunlp/instructor-base"
|
22 |
-
|
23 |
model_name=model_name, model_kwargs={"device": device}
|
24 |
)
|
25 |
|
@@ -28,11 +28,11 @@ embeddings = HuggingFaceInstructEmbeddings(
|
|
28 |
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
|
29 |
# chunks = len / 800
|
30 |
|
31 |
-
db = Chroma.from_documents(texts,
|
32 |
|
33 |
db = Chroma.from_documents(
|
34 |
texts,
|
35 |
-
|
36 |
persist_directory=PERSIST_DIRECTORY,
|
37 |
client_settings=CHROMA_SETTINGS,
|
38 |
)
|
@@ -126,7 +126,8 @@ CHROMA_SETTINGS = Settings(
|
|
126 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
127 |
|
128 |
ns_initial = SimpleNamespace(
|
129 |
-
|
|
|
130 |
ingest_done=None,
|
131 |
files_info=None,
|
132 |
files_uploaded=[],
|
@@ -229,17 +230,17 @@ def get_vectorstore(
|
|
229 |
persist=True,
|
230 |
):
|
231 |
"""Gne vectorstore."""
|
232 |
-
#
|
233 |
# for HuggingFaceInstructEmbeddings
|
234 |
model_name = "hkunlp/instructor-xl"
|
235 |
model_name = "hkunlp/instructor-large"
|
236 |
model_name = "hkunlp/instructor-base"
|
237 |
|
238 |
-
#
|
239 |
|
240 |
model_name = MODEL_NAME
|
241 |
logger.info(f"Loading {model_name}")
|
242 |
-
|
243 |
logger.info(f"Done loading {model_name}")
|
244 |
|
245 |
if vectorstore is None:
|
@@ -247,20 +248,20 @@ def get_vectorstore(
|
|
247 |
|
248 |
if vectorstore.lower() in ["chroma"]:
|
249 |
logger.info(
|
250 |
-
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=
|
251 |
)
|
252 |
if persist:
|
253 |
vectorstore = Chroma.from_texts(
|
254 |
texts=text_chunks,
|
255 |
-
embedding=
|
256 |
persist_directory=PERSIST_DIRECTORY,
|
257 |
client_settings=CHROMA_SETTINGS,
|
258 |
)
|
259 |
else:
|
260 |
-
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=
|
261 |
|
262 |
logger.info(
|
263 |
-
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
264 |
)
|
265 |
|
266 |
return vectorstore
|
@@ -268,11 +269,11 @@ def get_vectorstore(
|
|
268 |
# if vectorstore.lower() not in ['chroma']
|
269 |
# TODO handle other cases
|
270 |
logger.info(
|
271 |
-
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
272 |
)
|
273 |
-
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=
|
274 |
logger.info(
|
275 |
-
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=
|
276 |
)
|
277 |
|
278 |
return vectorstore
|
@@ -308,9 +309,7 @@ def process_files(
|
|
308 |
# wait for update before querying new ns.qa
|
309 |
ns.ingest_done = False
|
310 |
|
311 |
-
logger.debug(f"{ns.files_uploaded}")
|
312 |
-
|
313 |
-
logger.info(f"ingest({ns.files_uploaded})...")
|
314 |
|
315 |
# imgs = [None] * 24
|
316 |
# for img in progress.tqdm(imgs, desc="Loading from list"):
|
@@ -322,17 +321,25 @@ def process_files(
|
|
322 |
# for img in progress.tqdm(img_set, desc="inner list"):
|
323 |
# time.sleep(10.1)
|
324 |
|
325 |
-
# return
|
326 |
-
# return f"done file(s)"
|
327 |
|
328 |
documents = []
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
|
337 |
text_splitter = RecursiveCharacterTextSplitter(
|
338 |
chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap
|
@@ -340,30 +347,52 @@ def process_files(
|
|
340 |
texts = text_splitter.split_documents(documents)
|
341 |
|
342 |
logger.info(f"Loaded {len(ns.files_uploaded)} files ")
|
343 |
-
logger.info(f"Loaded {len(documents)}
|
344 |
-
logger.info(f"Split into {len(texts)}
|
345 |
-
|
346 |
-
#
|
347 |
-
if ns.
|
348 |
-
|
349 |
-
|
350 |
-
|
|
|
|
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
357 |
|
358 |
total = ceil(len(texts) / 101)
|
359 |
-
|
360 |
-
|
361 |
-
mit.chunked_even(texts, 101)
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
367 |
|
368 |
ns.ingest_done = True
|
369 |
_ = [
|
@@ -372,9 +401,55 @@ def process_files(
|
|
372 |
]
|
373 |
ns.files_info = _
|
374 |
|
375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
376 |
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
|
379 |
|
380 |
# pylint disable=unused-argument
|
@@ -424,9 +499,9 @@ def ingest(
|
|
424 |
logger.info(f"Loaded {len(documents)} documents ")
|
425 |
logger.info(f"Split into {len(texts)} chunks of text")
|
426 |
|
427 |
-
# Create
|
428 |
-
#
|
429 |
-
|
430 |
model_name=model_name, model_kwargs={"device": device}
|
431 |
)
|
432 |
|
@@ -437,7 +512,7 @@ def ingest(
|
|
437 |
# mit.chunked_even(texts, 100)
|
438 |
db = Chroma(
|
439 |
# persist_directory=PERSIST_DIRECTORY,
|
440 |
-
embedding_function=
|
441 |
# client_settings=CHROMA_SETTINGS,
|
442 |
)
|
443 |
# for text in progress.tqdm(
|
@@ -448,7 +523,7 @@ def ingest(
|
|
448 |
with about_time() as atime: # type: ignore
|
449 |
db = Chroma.from_documents(
|
450 |
texts,
|
451 |
-
|
452 |
persist_directory=PERSIST_DIRECTORY,
|
453 |
client_settings=CHROMA_SETTINGS,
|
454 |
)
|
@@ -512,7 +587,14 @@ def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
|
|
512 |
|
513 |
|
514 |
def load_qa(device=None, model_name: str = MODEL_NAME):
|
515 |
-
"""Gen qa.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
516 |
logger.info("Doing qa")
|
517 |
if device is None:
|
518 |
if torch.cuda.is_available():
|
@@ -520,19 +602,14 @@ def load_qa(device=None, model_name: str = MODEL_NAME):
|
|
520 |
else:
|
521 |
device = "cpu"
|
522 |
|
523 |
-
|
524 |
-
# model_name = "hkunlp/instructor-xl"
|
525 |
-
# model_name = "hkunlp/instructor-large"
|
526 |
-
# model_name = "hkunlp/instructor-base"
|
527 |
-
# embeddings = HuggingFaceInstructEmbeddings(
|
528 |
-
embeddings = SentenceTransformerEmbeddings(
|
529 |
model_name=model_name, model_kwargs={"device": device}
|
530 |
)
|
531 |
# xl 4.96G, large 3.5G,
|
532 |
|
533 |
db = Chroma(
|
534 |
persist_directory=PERSIST_DIRECTORY,
|
535 |
-
embedding_function=
|
536 |
client_settings=CHROMA_SETTINGS,
|
537 |
)
|
538 |
retriever = db.as_retriever()
|
@@ -552,8 +629,7 @@ def load_qa(device=None, model_name: str = MODEL_NAME):
|
|
552 |
|
553 |
return qa
|
554 |
|
555 |
-
#
|
556 |
-
|
557 |
# pylint: disable=unreachable
|
558 |
|
559 |
# model = 'gpt-3.5-turbo', default text-davinci-003
|
@@ -615,7 +691,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
615 |
gr.Markdown(dedent(_))
|
616 |
|
617 |
with gr.Tab("Upload files"):
|
618 |
-
# Upload files and generate
|
619 |
with gr.Row():
|
620 |
file_output = gr.File()
|
621 |
# file_output = gr.Text()
|
@@ -626,9 +702,10 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
626 |
file_count="multiple",
|
627 |
)
|
628 |
with gr.Row():
|
629 |
-
text2 = gr.Textbox("
|
630 |
-
process_btn = gr.Button("Click to
|
631 |
-
|
|
|
632 |
|
633 |
with gr.Tab("Query docs"):
|
634 |
# interactive chat
|
@@ -643,21 +720,24 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
643 |
ns = deepcopy(ns_initial)
|
644 |
return f"reset done: ns={ns}"
|
645 |
|
646 |
-
reset_btn.click(reset_all, [], text2)
|
647 |
|
648 |
upload_button.upload(upload_files, upload_button, file_output)
|
649 |
process_btn.click(process_files, [], text2)
|
650 |
|
651 |
def respond(message, chat_history):
|
652 |
"""Gen response."""
|
|
|
653 |
if ns.ingest_done is None: # no files processed yet
|
654 |
bot_message = "Upload some file(s) for processing first."
|
655 |
chat_history.append((message, bot_message))
|
656 |
return "", chat_history
|
657 |
|
|
|
658 |
if not ns.ingest_done: # embedding database not doen yet
|
659 |
bot_message = (
|
660 |
"Waiting for ingest (embedding) to finish, "
|
|
|
661 |
"be patient... You can switch the 'Upload files' "
|
662 |
"Tab to check"
|
663 |
)
|
@@ -695,13 +775,6 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
695 |
clear.click(lambda: None, None, chatbot, queue=False)
|
696 |
|
697 |
if __name__ == "__main__":
|
698 |
-
# main()
|
699 |
-
try:
|
700 |
-
from google import colab # noqa # type: ignore
|
701 |
-
|
702 |
-
share = True # start share when in colab
|
703 |
-
except Exception:
|
704 |
-
share = False
|
705 |
demo.queue(concurrency_count=20).launch(share=share)
|
706 |
|
707 |
_ = """
|
@@ -710,12 +783,12 @@ device = 'cpu'
|
|
710 |
model_name = "hkunlp/instructor-xl"
|
711 |
model_name = "hkunlp/instructor-large"
|
712 |
model_name = "hkunlp/instructor-base"
|
713 |
-
|
714 |
model_name=,
|
715 |
model_kwargs={"device": device}
|
716 |
)
|
717 |
# xl 4.96G, large 3.5G,
|
718 |
-
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=
|
719 |
retriever = db.as_retriever()
|
720 |
|
721 |
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
|
|
19 |
texts = text_splitter.split_documents(docs)
|
20 |
|
21 |
model_name = "hkunlp/instructor-base"
|
22 |
+
embedding = HuggingFaceInstructEmbeddings(
|
23 |
model_name=model_name, model_kwargs={"device": device}
|
24 |
)
|
25 |
|
|
|
28 |
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
|
29 |
# chunks = len / 800
|
30 |
|
31 |
+
db = Chroma.from_documents(texts, embedding)
|
32 |
|
33 |
db = Chroma.from_documents(
|
34 |
texts,
|
35 |
+
embedding,
|
36 |
persist_directory=PERSIST_DIRECTORY,
|
37 |
client_settings=CHROMA_SETTINGS,
|
38 |
)
|
|
|
126 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
127 |
|
128 |
ns_initial = SimpleNamespace(
|
129 |
+
db=None,
|
130 |
+
qa=None,
|
131 |
ingest_done=None,
|
132 |
files_info=None,
|
133 |
files_uploaded=[],
|
|
|
230 |
persist=True,
|
231 |
):
|
232 |
"""Gne vectorstore."""
|
233 |
+
# embedding = OpenAIEmbeddings()
|
234 |
# for HuggingFaceInstructEmbeddings
|
235 |
model_name = "hkunlp/instructor-xl"
|
236 |
model_name = "hkunlp/instructor-large"
|
237 |
model_name = "hkunlp/instructor-base"
|
238 |
|
239 |
+
# embedding = HuggingFaceInstructEmbeddings(model_name=model_name)
|
240 |
|
241 |
model_name = MODEL_NAME
|
242 |
logger.info(f"Loading {model_name}")
|
243 |
+
embedding = SentenceTransformerEmbeddings(model_name=model_name)
|
244 |
logger.info(f"Done loading {model_name}")
|
245 |
|
246 |
if vectorstore is None:
|
|
|
248 |
|
249 |
if vectorstore.lower() in ["chroma"]:
|
250 |
logger.info(
|
251 |
+
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=embedding)"
|
252 |
)
|
253 |
if persist:
|
254 |
vectorstore = Chroma.from_texts(
|
255 |
texts=text_chunks,
|
256 |
+
embedding=embedding,
|
257 |
persist_directory=PERSIST_DIRECTORY,
|
258 |
client_settings=CHROMA_SETTINGS,
|
259 |
)
|
260 |
else:
|
261 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embedding)
|
262 |
|
263 |
logger.info(
|
264 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
265 |
)
|
266 |
|
267 |
return vectorstore
|
|
|
269 |
# if vectorstore.lower() not in ['chroma']
|
270 |
# TODO handle other cases
|
271 |
logger.info(
|
272 |
+
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
273 |
)
|
274 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding)
|
275 |
logger.info(
|
276 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)"
|
277 |
)
|
278 |
|
279 |
return vectorstore
|
|
|
309 |
# wait for update before querying new ns.qa
|
310 |
ns.ingest_done = False
|
311 |
|
312 |
+
logger.debug(f"ns.files_uploaded: {ns.files_uploaded}")
|
|
|
|
|
313 |
|
314 |
# imgs = [None] * 24
|
315 |
# for img in progress.tqdm(imgs, desc="Loading from list"):
|
|
|
321 |
# for img in progress.tqdm(img_set, desc="inner list"):
|
322 |
# time.sleep(10.1)
|
323 |
|
324 |
+
# return "done..."
|
|
|
325 |
|
326 |
documents = []
|
327 |
+
if progress is None:
|
328 |
+
for file_path in ns.files_uploaded:
|
329 |
+
logger.debug(f"-Doing {file_path}")
|
330 |
+
try:
|
331 |
+
documents.extend(load_single_document(f"{file_path}"))
|
332 |
+
logger.debug("-Done reading files.")
|
333 |
+
except Exception as exc:
|
334 |
+
logger.error(f"-{file_path}: {exc}")
|
335 |
+
else:
|
336 |
+
for file_path in progress.tqdm(ns.files_uploaded, desc="Reading file(s)"):
|
337 |
+
logger.debug(f"Doing {file_path}")
|
338 |
+
try:
|
339 |
+
documents.extend(load_single_document(f"{file_path}"))
|
340 |
+
logger.debug("Done reading files.")
|
341 |
+
except Exception as exc:
|
342 |
+
logger.error(f"{file_path}: {exc}")
|
343 |
|
344 |
text_splitter = RecursiveCharacterTextSplitter(
|
345 |
chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap
|
|
|
347 |
texts = text_splitter.split_documents(documents)
|
348 |
|
349 |
logger.info(f"Loaded {len(ns.files_uploaded)} files ")
|
350 |
+
logger.info(f"Loaded {len(documents)} document(s) ")
|
351 |
+
logger.info(f"Split into {len(texts)} chunk(s) of text")
|
352 |
+
|
353 |
+
# initialize if necessary
|
354 |
+
if ns.db is None:
|
355 |
+
logger.info(f"loading {ns.model_name:}")
|
356 |
+
for _ in progress.tqdm(range(1), desc="diggin..."):
|
357 |
+
embedding = SentenceTransformerEmbeddings(
|
358 |
+
model_name=ns.model_name, model_kwargs={"device": DEVICE}
|
359 |
+
)
|
360 |
|
361 |
+
logger.info("creating vectorstore")
|
362 |
+
ns.db = Chroma(
|
363 |
+
# persist_directory=PERSIST_DIRECTORY,
|
364 |
+
embedding_function=embedding,
|
365 |
+
# client_settings=CHROMA_SETTINGS,
|
366 |
+
)
|
367 |
+
logger.info("done creating vectorstore")
|
368 |
|
369 |
total = ceil(len(texts) / 101)
|
370 |
+
if progress is None:
|
371 |
+
# for text in progress.tqdm(
|
372 |
+
for idx, text in enumerate(mit.chunked_even(texts, 101)):
|
373 |
+
logger.debug(f"-{idx + 1} of {total}")
|
374 |
+
ns.db.add_documents(documents=text)
|
375 |
+
else:
|
376 |
+
# for text in progress.tqdm(
|
377 |
+
for idx, text in enumerate(progress.tqdm(
|
378 |
+
mit.chunked_even(texts, 101),
|
379 |
+
total=total,
|
380 |
+
desc="Processing docs",
|
381 |
+
)):
|
382 |
+
logger.debug(f"{idx + 1} of {total}")
|
383 |
+
ns.db.add_documents(documents=text)
|
384 |
+
logger.debug(f" done all {total}")
|
385 |
+
|
386 |
+
# ns.qa = load_qa()
|
387 |
+
|
388 |
+
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
|
389 |
+
retriever = ns.db.as_retriever()
|
390 |
+
ns.qa = RetrievalQA.from_chain_type(
|
391 |
+
llm=llm,
|
392 |
+
chain_type="stuff",
|
393 |
+
retriever=retriever,
|
394 |
+
# return_source_documents=True,
|
395 |
+
)
|
396 |
|
397 |
ns.ingest_done = True
|
398 |
_ = [
|
|
|
401 |
]
|
402 |
ns.files_info = _
|
403 |
|
404 |
+
logger.debug(f"{ns.ingest_done=}, exit process_files")
|
405 |
+
return f"done file(s): {dict(ns.files_info)}"
|
406 |
+
|
407 |
+
|
408 |
+
def respond(message, chat_history):
|
409 |
+
"""Gen response."""
|
410 |
+
logger.debug(f"{ns.files_uploaded=}")
|
411 |
+
if not ns.files_uploaded: # no files processed yet
|
412 |
+
bot_message = "Upload some file(s) for processing first."
|
413 |
+
chat_history.append((message, bot_message))
|
414 |
+
return "", chat_history
|
415 |
|
416 |
+
logger.debug(f"{ns.ingest_done=}")
|
417 |
+
if not ns.ingest_done: # embedding database not doen yet
|
418 |
+
bot_message = (
|
419 |
+
"Waiting for ingest (embedding) to finish, "
|
420 |
+
"be patient... You can switch the 'Upload files' "
|
421 |
+
"Tab to check"
|
422 |
+
)
|
423 |
+
chat_history.append((message, bot_message))
|
424 |
+
return "", chat_history
|
425 |
+
|
426 |
+
_ = """
|
427 |
+
if ns.qa is None: # load qa one time
|
428 |
+
logger.info("Loading qa, need to do just one time.")
|
429 |
+
ns.qa = load_qa()
|
430 |
+
logger.info("Done loading qa, need to do just one time.")
|
431 |
+
# """
|
432 |
+
logger.debug(f"{ns.qa=}")
|
433 |
+
if ns.qa is None:
|
434 |
+
bot_message = "Looks like the bot is not ready. Try again later..."
|
435 |
+
chat_history.append((message, bot_message))
|
436 |
+
return "", chat_history
|
437 |
+
|
438 |
+
try:
|
439 |
+
res = ns.qa(message)
|
440 |
+
answer = res.get("result")
|
441 |
+
docs = res.get("source_documents")
|
442 |
+
if docs:
|
443 |
+
bot_message = f"{answer}\n({docs})"
|
444 |
+
else:
|
445 |
+
bot_message = f"{answer}"
|
446 |
+
except Exception as exc:
|
447 |
+
logger.error(exc)
|
448 |
+
bot_message = f"bummer! {exc}"
|
449 |
+
|
450 |
+
chat_history.append((message, bot_message))
|
451 |
+
|
452 |
+
return "", chat_history
|
453 |
|
454 |
|
455 |
# pylint disable=unused-argument
|
|
|
499 |
logger.info(f"Loaded {len(documents)} documents ")
|
500 |
logger.info(f"Split into {len(texts)} chunks of text")
|
501 |
|
502 |
+
# Create embedding
|
503 |
+
# embedding = HuggingFaceInstructEmbeddings(
|
504 |
+
embedding = SentenceTransformerEmbeddings(
|
505 |
model_name=model_name, model_kwargs={"device": device}
|
506 |
)
|
507 |
|
|
|
512 |
# mit.chunked_even(texts, 100)
|
513 |
db = Chroma(
|
514 |
# persist_directory=PERSIST_DIRECTORY,
|
515 |
+
embedding_function=embedding,
|
516 |
# client_settings=CHROMA_SETTINGS,
|
517 |
)
|
518 |
# for text in progress.tqdm(
|
|
|
523 |
with about_time() as atime: # type: ignore
|
524 |
db = Chroma.from_documents(
|
525 |
texts,
|
526 |
+
embedding,
|
527 |
persist_directory=PERSIST_DIRECTORY,
|
528 |
client_settings=CHROMA_SETTINGS,
|
529 |
)
|
|
|
587 |
|
588 |
|
589 |
def load_qa(device=None, model_name: str = MODEL_NAME):
|
590 |
+
"""Gen qa.
|
591 |
+
|
592 |
+
device = 'cpu'
|
593 |
+
model_name = "hkunlp/instructor-xl"
|
594 |
+
model_name = "hkunlp/instructor-large"
|
595 |
+
model_name = "hkunlp/instructor-base"
|
596 |
+
embedding = HuggingFaceInstructEmbeddings(
|
597 |
+
"""
|
598 |
logger.info("Doing qa")
|
599 |
if device is None:
|
600 |
if torch.cuda.is_available():
|
|
|
602 |
else:
|
603 |
device = "cpu"
|
604 |
|
605 |
+
embedding = SentenceTransformerEmbeddings(
|
|
|
|
|
|
|
|
|
|
|
606 |
model_name=model_name, model_kwargs={"device": device}
|
607 |
)
|
608 |
# xl 4.96G, large 3.5G,
|
609 |
|
610 |
db = Chroma(
|
611 |
persist_directory=PERSIST_DIRECTORY,
|
612 |
+
embedding_function=embedding,
|
613 |
client_settings=CHROMA_SETTINGS,
|
614 |
)
|
615 |
retriever = db.as_retriever()
|
|
|
629 |
|
630 |
return qa
|
631 |
|
632 |
+
# TODO: conversation_chain
|
|
|
633 |
# pylint: disable=unreachable
|
634 |
|
635 |
# model = 'gpt-3.5-turbo', default text-davinci-003
|
|
|
691 |
gr.Markdown(dedent(_))
|
692 |
|
693 |
with gr.Tab("Upload files"):
|
694 |
+
# Upload files and generate vectorstore
|
695 |
with gr.Row():
|
696 |
file_output = gr.File()
|
697 |
# file_output = gr.Text()
|
|
|
702 |
file_count="multiple",
|
703 |
)
|
704 |
with gr.Row():
|
705 |
+
text2 = gr.Textbox("Gen embedding")
|
706 |
+
process_btn = gr.Button("Click to embed")
|
707 |
+
|
708 |
+
# reset_btn = gr.Button("Reset everything", visibile=False)
|
709 |
|
710 |
with gr.Tab("Query docs"):
|
711 |
# interactive chat
|
|
|
720 |
ns = deepcopy(ns_initial)
|
721 |
return f"reset done: ns={ns}"
|
722 |
|
723 |
+
# reset_btn.click(reset_all, [], text2)
|
724 |
|
725 |
upload_button.upload(upload_files, upload_button, file_output)
|
726 |
process_btn.click(process_files, [], text2)
|
727 |
|
728 |
def respond(message, chat_history):
|
729 |
"""Gen response."""
|
730 |
+
logger.info(f"{ns.ingest_done=}")
|
731 |
if ns.ingest_done is None: # no files processed yet
|
732 |
bot_message = "Upload some file(s) for processing first."
|
733 |
chat_history.append((message, bot_message))
|
734 |
return "", chat_history
|
735 |
|
736 |
+
logger.info(f"{ns.ingest_done=}")
|
737 |
if not ns.ingest_done: # embedding database not doen yet
|
738 |
bot_message = (
|
739 |
"Waiting for ingest (embedding) to finish, "
|
740 |
+
f"({ns.ingest_done=})"
|
741 |
"be patient... You can switch the 'Upload files' "
|
742 |
"Tab to check"
|
743 |
)
|
|
|
775 |
clear.click(lambda: None, None, chatbot, queue=False)
|
776 |
|
777 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
778 |
demo.queue(concurrency_count=20).launch(share=share)
|
779 |
|
780 |
_ = """
|
|
|
783 |
model_name = "hkunlp/instructor-xl"
|
784 |
model_name = "hkunlp/instructor-large"
|
785 |
model_name = "hkunlp/instructor-base"
|
786 |
+
embedding = HuggingFaceInstructEmbeddings(
|
787 |
model_name=,
|
788 |
model_kwargs={"device": device}
|
789 |
)
|
790 |
# xl 4.96G, large 3.5G,
|
791 |
+
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding, client_settings=CHROMA_SETTINGS)
|
792 |
retriever = db.as_retriever()
|
793 |
|
794 |
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
docs/test2.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
总 纲
|
2 |
+
中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的领导核心,代表中国先进生产力的发展要求,代表中国先进文化的前进方向,代表中国最广大人民的根本利益。党的最高理想和最终目标是实现共产主义。
|
main.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test."""
|
2 |
+
# pylint: disable=invalid-name, unused-import, broad-except,
|
3 |
+
from copy import deepcopy
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from app import ingest, ns, ns_initial, process_files, upload_files, respond
|
7 |
+
from load_api_key import load_api_key, pk_base, sk_base
|
8 |
+
from loguru import logger
|
9 |
+
|
10 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
11 |
+
with gr.Tab("Upload files"):
|
12 |
+
# Upload files and generate vectorstore
|
13 |
+
with gr.Row():
|
14 |
+
file_output = gr.File()
|
15 |
+
# file_output = gr.Text()
|
16 |
+
# file_output = gr.DataFrame()
|
17 |
+
upload_button = gr.UploadButton(
|
18 |
+
"Click to upload",
|
19 |
+
# file_types=["*.pdf", "*.epub", "*.docx"],
|
20 |
+
file_count="multiple",
|
21 |
+
)
|
22 |
+
with gr.Row():
|
23 |
+
text2 = gr.Textbox("Gen embedding")
|
24 |
+
process_btn = gr.Button("Click to embed")
|
25 |
+
|
26 |
+
reset_btn = gr.Button("Reset everything", visible=False)
|
27 |
+
|
28 |
+
with gr.Tab("Query docs"):
|
29 |
+
# interactive chat
|
30 |
+
chatbot = gr.Chatbot()
|
31 |
+
msg = gr.Textbox(label="Query")
|
32 |
+
clear = gr.Button("Clear")
|
33 |
+
|
34 |
+
# actions
|
35 |
+
def reset_all():
|
36 |
+
"""Reset ns."""
|
37 |
+
# global ns
|
38 |
+
globals().update(**{"ns": deepcopy(ns_initial)})
|
39 |
+
return f"reset done: ns={ns}"
|
40 |
+
|
41 |
+
reset_btn.click(reset_all, [], text2)
|
42 |
+
|
43 |
+
upload_button.upload(upload_files, upload_button, file_output)
|
44 |
+
process_btn.click(process_files, [], text2)
|
45 |
+
|
46 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
47 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
demo.queue(concurrency_count=20).launch()
|
requirements-freeze.txt
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
about-time==4.2.1
|
2 |
+
absl-py==0.11.0
|
3 |
+
accelerate==0.19.0
|
4 |
+
aiofiles==23.1.0
|
5 |
+
aiohttp==3.8.4
|
6 |
+
aiosignal==1.3.1
|
7 |
+
altair==5.0.1
|
8 |
+
analytics-python==1.4.post1
|
9 |
+
anyio==3.7.0
|
10 |
+
argilla==1.8.0
|
11 |
+
astroid==2.15.5
|
12 |
+
asttokens==2.2.1
|
13 |
+
async-timeout==4.0.2
|
14 |
+
attrs==23.1.0
|
15 |
+
backcall==0.2.0
|
16 |
+
backoff==1.10.0
|
17 |
+
bcrypt==4.0.1
|
18 |
+
bitsandbytes==0.39.0
|
19 |
+
black==23.3.0
|
20 |
+
certifi==2023.5.7
|
21 |
+
cffi==1.15.1
|
22 |
+
chardet==5.1.0
|
23 |
+
charset-normalizer==3.1.0
|
24 |
+
chromadb==0.3.22
|
25 |
+
click==8.1.3
|
26 |
+
clickhouse-connect==0.5.25
|
27 |
+
colorama==0.4.6
|
28 |
+
commonmark==0.9.1
|
29 |
+
contourpy==1.0.7
|
30 |
+
cryptography==41.0.1
|
31 |
+
cycler==0.11.0
|
32 |
+
dataclasses-json==0.5.7
|
33 |
+
decorator==5.1.1
|
34 |
+
Deprecated==1.2.14
|
35 |
+
dill==0.3.6
|
36 |
+
docx2txt==0.8
|
37 |
+
duckdb==0.8.0
|
38 |
+
EbookLib==0.17.1
|
39 |
+
epub2txt==0.1.6
|
40 |
+
et-xmlfile==1.1.0
|
41 |
+
exceptiongroup==1.1.1
|
42 |
+
executing==1.2.0
|
43 |
+
faiss-cpu==1.7.4
|
44 |
+
fastapi==0.96.0
|
45 |
+
ffmpy==0.3.0
|
46 |
+
filelock==3.12.0
|
47 |
+
fonttools==4.39.4
|
48 |
+
frozenlist==1.3.3
|
49 |
+
fsspec==2023.5.0
|
50 |
+
gradio==3.35.2
|
51 |
+
gradio_client==0.2.7
|
52 |
+
greenlet==2.0.2
|
53 |
+
h11==0.12.0
|
54 |
+
hnswlib==0.7.0
|
55 |
+
httpcore==0.12.3
|
56 |
+
httptools==0.5.0
|
57 |
+
httpx==0.16.1
|
58 |
+
huggingface-hub==0.15.1
|
59 |
+
idna==3.4
|
60 |
+
InstructorEmbedding==1.0.1
|
61 |
+
ipython==8.14.0
|
62 |
+
isort==5.12.0
|
63 |
+
jedi==0.18.2
|
64 |
+
Jinja2==3.1.2
|
65 |
+
joblib==1.2.0
|
66 |
+
jsonschema==4.17.3
|
67 |
+
kiwisolver==1.4.4
|
68 |
+
langchain==0.0.166
|
69 |
+
lazy-object-proxy==1.9.0
|
70 |
+
linkify-it-py==2.0.2
|
71 |
+
llama-cpp-python==0.1.48
|
72 |
+
llama-index==0.6.21.post1
|
73 |
+
loguru==0.7.0
|
74 |
+
logzero==1.7.0
|
75 |
+
lxml==4.9.2
|
76 |
+
lz4==4.3.2
|
77 |
+
Markdown==3.4.3
|
78 |
+
markdown-it-py==2.2.0
|
79 |
+
MarkupSafe==2.1.3
|
80 |
+
marshmallow==3.19.0
|
81 |
+
marshmallow-enum==1.5.1
|
82 |
+
matplotlib==3.7.1
|
83 |
+
matplotlib-inline==0.1.6
|
84 |
+
mccabe==0.7.0
|
85 |
+
mdit-py-plugins==0.3.3
|
86 |
+
mdurl==0.1.2
|
87 |
+
monotonic==1.6
|
88 |
+
more-itertools==9.1.0
|
89 |
+
mpmath==1.3.0
|
90 |
+
msg-parser==1.2.0
|
91 |
+
multidict==6.0.4
|
92 |
+
mypy-extensions==1.0.0
|
93 |
+
networkx==3.1
|
94 |
+
nltk==3.8.1
|
95 |
+
numexpr==2.8.4
|
96 |
+
numpy==1.23.5
|
97 |
+
olefile==0.46
|
98 |
+
openai==0.27.8
|
99 |
+
openapi-schema-pydantic==1.2.4
|
100 |
+
openpyxl==3.1.2
|
101 |
+
orjson==3.9.0
|
102 |
+
packaging==23.1
|
103 |
+
pandas==1.5.3
|
104 |
+
paramiko==3.2.0
|
105 |
+
parso==0.8.3
|
106 |
+
pathspec==0.11.1
|
107 |
+
pdfminer.six==20221105
|
108 |
+
pickleshare==0.7.5
|
109 |
+
Pillow==9.5.0
|
110 |
+
platformdirs==3.5.1
|
111 |
+
posthog==3.0.1
|
112 |
+
prompt-toolkit==3.0.38
|
113 |
+
protobuf==3.20.0
|
114 |
+
psutil==5.9.5
|
115 |
+
pure-eval==0.2.2
|
116 |
+
pycparser==2.21
|
117 |
+
pycryptodome==3.18.0
|
118 |
+
pydantic==1.10.8
|
119 |
+
pydub==0.25.1
|
120 |
+
Pygments==2.15.1
|
121 |
+
pylint==2.17.4
|
122 |
+
PyNaCl==1.5.0
|
123 |
+
pypandoc==1.11
|
124 |
+
pyparsing==3.0.9
|
125 |
+
pypdf==3.9.1
|
126 |
+
PyPDF2==3.0.1
|
127 |
+
pyrsistent==0.19.3
|
128 |
+
python-dateutil==2.8.2
|
129 |
+
python-docx==0.8.11
|
130 |
+
python-dotenv==1.0.0
|
131 |
+
python-magic==0.4.27
|
132 |
+
python-multipart==0.0.6
|
133 |
+
python-pptx==0.6.21
|
134 |
+
pytz==2023.3
|
135 |
+
PyYAML==6.0
|
136 |
+
regex==2023.6.3
|
137 |
+
requests==2.31.0
|
138 |
+
rfc3986==1.5.0
|
139 |
+
rich==13.0.1
|
140 |
+
scikit-learn==1.2.2
|
141 |
+
scipy==1.10.1
|
142 |
+
semantic-version==2.10.0
|
143 |
+
sentence-transformers==2.2.2
|
144 |
+
sentencepiece==0.1.99
|
145 |
+
six==1.16.0
|
146 |
+
sniffio==1.3.0
|
147 |
+
SQLAlchemy==2.0.15
|
148 |
+
stack-data==0.6.2
|
149 |
+
starlette==0.27.0
|
150 |
+
sympy==1.12
|
151 |
+
tabulate==0.9.0
|
152 |
+
tenacity==8.2.2
|
153 |
+
threadpoolctl==3.1.0
|
154 |
+
tiktoken==0.4.0
|
155 |
+
tokenizers==0.13.3
|
156 |
+
tomli==2.0.1
|
157 |
+
tomlkit==0.11.8
|
158 |
+
toolz==0.12.0
|
159 |
+
torch==2.0.1
|
160 |
+
torchvision==0.15.2
|
161 |
+
tqdm==4.65.0
|
162 |
+
traitlets==5.9.0
|
163 |
+
transformers==4.29.2
|
164 |
+
typer==0.9.0
|
165 |
+
typing-inspect==0.8.0
|
166 |
+
typing_extensions==4.5.0
|
167 |
+
tzdata==2023.3
|
168 |
+
uc-micro-py==1.0.2
|
169 |
+
urllib3==1.26.6
|
170 |
+
uvicorn==0.22.0
|
171 |
+
watchfiles==0.19.0
|
172 |
+
wcwidth==0.2.6
|
173 |
+
websockets==11.0.3
|
174 |
+
win32-setctime==1.1.0
|
175 |
+
wrapt==1.14.1
|
176 |
+
xlrd==2.0.1
|
177 |
+
XlsxWriter==3.1.2
|
178 |
+
yarl==1.9.2
|
179 |
+
zstandard==0.21.0
|
requirements-win10-cpu.txt
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain==0.0.166
|
2 |
+
chromadb==0.3.22
|
3 |
+
llama-cpp-python==0.1.48
|
4 |
+
urllib3==1.26.6
|
5 |
+
pdfminer.six==20221105
|
6 |
+
InstructorEmbedding
|
7 |
+
|
8 |
+
# required by sentence-transformers
|
9 |
+
# do not use the following in windows. it will cause
|
10 |
+
# "Throws a silent error if function takes more than 5 seconds #3078" issue https://github.com/gradio-app/gradio/issues/3078
|
11 |
+
# --extra-index-url https://download.pytorch.org/whl/cpu
|
12 |
+
torch
|
13 |
+
torchvision
|
14 |
+
sentence-transformers
|
15 |
+
faiss-cpu
|
16 |
+
huggingface_hub
|
17 |
+
transformers
|
18 |
+
protobuf==3.20.0
|
19 |
+
accelerate
|
20 |
+
bitsandbytes
|
21 |
+
# click
|
22 |
+
openpyxl
|
23 |
+
loguru
|
24 |
+
gradio
|
25 |
+
charset-normalizer
|
26 |
+
PyPDF2
|
27 |
+
epub2txt
|
28 |
+
docx2txt
|
29 |
+
|
30 |
+
about-time
|
31 |
+
openai
|
32 |
+
more-itertools
|
33 |
+
# tqdm
|
requirements.txt
CHANGED
@@ -16,7 +16,7 @@ transformers
|
|
16 |
protobuf==3.20.0
|
17 |
accelerate
|
18 |
bitsandbytes
|
19 |
-
click
|
20 |
openpyxl
|
21 |
loguru
|
22 |
gradio
|
@@ -28,4 +28,4 @@ docx2txt
|
|
28 |
about-time
|
29 |
openai
|
30 |
more-itertools
|
31 |
-
tqdm
|
|
|
16 |
protobuf==3.20.0
|
17 |
accelerate
|
18 |
bitsandbytes
|
19 |
+
# click
|
20 |
openpyxl
|
21 |
loguru
|
22 |
gradio
|
|
|
28 |
about-time
|
29 |
openai
|
30 |
more-itertools
|
31 |
+
# tqdm
|