Spaces:
Runtime error
Runtime error
ffreemt
commited on
Commit
•
50c6a2e
1
Parent(s):
ebbd809
Update progressbar
Browse files- .editorconfig +10 -0
- .gitignore +3 -0
- app-org.py +526 -0
- app.py +364 -159
- docs/test.sdlxliff +0 -0
- load_api_key.py +38 -0
- package.json +20 -0
- requirements.txt +3 -1
- yarn.lock +23 -0
.editorconfig
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
root = true
|
2 |
+
|
3 |
+
[*]
|
4 |
+
end_of_line = lf
|
5 |
+
insert_final_newline = true
|
6 |
+
|
7 |
+
[*.{js,json,yml}]
|
8 |
+
charset = utf-8
|
9 |
+
indent_style = space
|
10 |
+
indent_size = 2
|
.gitignore
CHANGED
@@ -4,3 +4,6 @@ dummy
|
|
4 |
.ENV
|
5 |
.env
|
6 |
__pycache__
|
|
|
|
|
|
|
|
4 |
.ENV
|
5 |
.env
|
6 |
__pycache__
|
7 |
+
.yarn
|
8 |
+
.chroma
|
9 |
+
.pnp.cjs
|
app-org.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Refer to
|
2 |
+
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
|
3 |
+
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
|
4 |
+
|
5 |
+
https://python.langchain.com/en/latest/getting_started/tutorials.html
|
6 |
+
|
7 |
+
unstructured: python-magic python-docx python-pptx
|
8 |
+
from langchain.document_loaders import UnstructuredHTMLLoader
|
9 |
+
|
10 |
+
docs = []
|
11 |
+
# for doc in Path('docs').glob("*.pdf"):
|
12 |
+
for doc in Path('docs').glob("*"):
|
13 |
+
# for doc in Path('docs').glob("*.txt"):
|
14 |
+
docs.append(load_single_document(f"{doc}"))
|
15 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
16 |
+
texts = text_splitter.split_documents(docs)
|
17 |
+
|
18 |
+
model_name = "hkunlp/instructor-base"
|
19 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
20 |
+
model_name=model_name, model_kwargs={"device": device}
|
21 |
+
)
|
22 |
+
|
23 |
+
# constitution.pdf 54344, 72 chunks Wall time: 3min 13s CPU times: total: 9min 4s @golay
|
24 |
+
# test.txt 21286, 27 chunks, Wall time: 47 s CPU times: total: 2min 30s @golay
|
25 |
+
# both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s
|
26 |
+
# chunks = len / 800
|
27 |
+
|
28 |
+
db = Chroma.from_documents(texts, embeddings)
|
29 |
+
|
30 |
+
db = Chroma.from_documents(
|
31 |
+
texts,
|
32 |
+
embeddings,
|
33 |
+
persist_directory=PERSIST_DIRECTORY,
|
34 |
+
client_settings=CHROMA_SETTINGS,
|
35 |
+
)
|
36 |
+
db.persist()
|
37 |
+
|
38 |
+
# 中国共产党章程.txt qa
|
39 |
+
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt
|
40 |
+
|
41 |
+
colab CPU test.text constitution.pdf
|
42 |
+
CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
|
43 |
+
Wall time: 1min 37s
|
44 |
+
|
45 |
+
"""
|
46 |
+
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member
|
47 |
+
import os
|
48 |
+
import time
|
49 |
+
from pathlib import Path
|
50 |
+
from textwrap import dedent
|
51 |
+
from types import SimpleNamespace
|
52 |
+
|
53 |
+
import gradio as gr
|
54 |
+
import torch
|
55 |
+
from charset_normalizer import detect
|
56 |
+
from chromadb.config import Settings
|
57 |
+
from epub2txt import epub2txt
|
58 |
+
from langchain.chains import RetrievalQA
|
59 |
+
from langchain.docstore.document import Document
|
60 |
+
from langchain.document_loaders import (
|
61 |
+
CSVLoader,
|
62 |
+
Docx2txtLoader,
|
63 |
+
PDFMinerLoader,
|
64 |
+
TextLoader,
|
65 |
+
)
|
66 |
+
|
67 |
+
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
|
68 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
69 |
+
from langchain.llms import HuggingFacePipeline
|
70 |
+
from langchain.text_splitter import (
|
71 |
+
# CharacterTextSplitter,
|
72 |
+
RecursiveCharacterTextSplitter,
|
73 |
+
)
|
74 |
+
|
75 |
+
# FAISS instead of PineCone
|
76 |
+
from langchain.vectorstores import Chroma # FAISS,
|
77 |
+
from loguru import logger
|
78 |
+
# from PyPDF2 import PdfReader # localgpt
|
79 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
|
80 |
+
|
81 |
+
# import click
|
82 |
+
# from typing import List
|
83 |
+
|
84 |
+
# from utils import xlxs_to_csv
|
85 |
+
|
86 |
+
# load possible env such as OPENAI_API_KEY
|
87 |
+
# from dotenv import load_dotenv
|
88 |
+
|
89 |
+
# load_dotenv()load_dotenv()
|
90 |
+
|
91 |
+
# fix timezone
|
92 |
+
os.environ["TZ"] = "Asia/Shanghai"
|
93 |
+
try:
|
94 |
+
time.tzset() # type: ignore # pylint: disable=no-member
|
95 |
+
except Exception:
|
96 |
+
# Windows
|
97 |
+
logger.warning("Windows, cant run time.tzset()")
|
98 |
+
|
99 |
+
ROOT_DIRECTORY = Path(__file__).parent
|
100 |
+
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
|
101 |
+
|
102 |
+
# Define the Chroma settings
|
103 |
+
CHROMA_SETTINGS = Settings(
|
104 |
+
chroma_db_impl="duckdb+parquet",
|
105 |
+
persist_directory=PERSIST_DIRECTORY,
|
106 |
+
anonymized_telemetry=False,
|
107 |
+
)
|
108 |
+
ns = SimpleNamespace(qa=None, ingest_done=None, files_info=None)
|
109 |
+
|
110 |
+
|
111 |
+
def load_single_document(file_path: str | Path) -> Document:
|
112 |
+
"""ingest.py"""
|
113 |
+
# Loads a single document from a file path
|
114 |
+
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
|
115 |
+
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
|
116 |
+
if file_path.endswith(".txt"):
|
117 |
+
if encoding is None:
|
118 |
+
logger.warning(
|
119 |
+
f" {file_path}'s encoding is None "
|
120 |
+
"Something is fishy, return empty str "
|
121 |
+
)
|
122 |
+
return Document(page_content="", metadata={"source": file_path})
|
123 |
+
|
124 |
+
try:
|
125 |
+
loader = TextLoader(file_path, encoding=encoding)
|
126 |
+
except Exception as exc:
|
127 |
+
logger.warning(f" {exc}, return dummy ")
|
128 |
+
return Document(page_content="", metadata={"source": file_path})
|
129 |
+
|
130 |
+
elif file_path.endswith(".pdf"):
|
131 |
+
loader = PDFMinerLoader(file_path)
|
132 |
+
elif file_path.endswith(".csv"):
|
133 |
+
loader = CSVLoader(file_path)
|
134 |
+
elif Path(file_path).suffix in [".docx"]:
|
135 |
+
try:
|
136 |
+
loader = Docx2txtLoader(file_path)
|
137 |
+
except Exception as exc:
|
138 |
+
logger.error(f" {file_path} errors: {exc}")
|
139 |
+
return Document(page_content="", metadata={"source": file_path})
|
140 |
+
elif Path(file_path).suffix in [".epub"]: # for epub? epub2txt unstructured
|
141 |
+
try:
|
142 |
+
_ = epub2txt(file_path)
|
143 |
+
except Exception as exc:
|
144 |
+
logger.error(f" {file_path} errors: {exc}")
|
145 |
+
return Document(page_content="", metadata={"source": file_path})
|
146 |
+
return Document(page_content=_, metadata={"source": file_path})
|
147 |
+
else:
|
148 |
+
if encoding is None:
|
149 |
+
logger.warning(
|
150 |
+
f" {file_path}'s encoding is None "
|
151 |
+
"Likely binary files, return empty str "
|
152 |
+
)
|
153 |
+
return Document(page_content="", metadata={"source": file_path})
|
154 |
+
try:
|
155 |
+
loader = TextLoader(file_path)
|
156 |
+
except Exception as exc:
|
157 |
+
logger.error(f" {exc}, returnning empty string")
|
158 |
+
return Document(page_content="", metadata={"source": file_path})
|
159 |
+
|
160 |
+
return loader.load()[0]
|
161 |
+
|
162 |
+
|
163 |
+
def get_pdf_text(pdf_docs):
|
164 |
+
"""docs-chat."""
|
165 |
+
text = ""
|
166 |
+
for pdf in pdf_docs:
|
167 |
+
pdf_reader = PdfReader(f"{pdf}") # taking care of Path
|
168 |
+
for page in pdf_reader.pages:
|
169 |
+
text += page.extract_text()
|
170 |
+
return text
|
171 |
+
|
172 |
+
|
173 |
+
def get_text_chunks(text):
|
174 |
+
"""docs-chat."""
|
175 |
+
text_splitter = CharacterTextSplitter(
|
176 |
+
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
177 |
+
)
|
178 |
+
chunks = text_splitter.split_text(text)
|
179 |
+
return chunks
|
180 |
+
|
181 |
+
|
182 |
+
def get_vectorstore(text_chunks):
|
183 |
+
"""docs-chat."""
|
184 |
+
# embeddings = OpenAIEmbeddings()
|
185 |
+
model_name = "hkunlp/instructor-xl"
|
186 |
+
model_name = "hkunlp/instructor-large"
|
187 |
+
model_name = "hkunlp/instructor-base"
|
188 |
+
logger.info(f"Loading {model_name}")
|
189 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
|
190 |
+
logger.info(f"Done loading {model_name}")
|
191 |
+
|
192 |
+
logger.info(
|
193 |
+
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
|
194 |
+
)
|
195 |
+
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
|
196 |
+
logger.info(
|
197 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
|
198 |
+
)
|
199 |
+
|
200 |
+
return vectorstore
|
201 |
+
|
202 |
+
|
203 |
+
def greet(name):
|
204 |
+
"""Test."""
|
205 |
+
logger.debug(f" name: [{name}] ")
|
206 |
+
return "Hello " + name + "!!"
|
207 |
+
|
208 |
+
|
209 |
+
def upload_files(files):
|
210 |
+
"""Upload files."""
|
211 |
+
file_paths = [file.name for file in files]
|
212 |
+
logger.info(file_paths)
|
213 |
+
|
214 |
+
ns.ingest_done = False
|
215 |
+
res = ingest(file_paths)
|
216 |
+
logger.info(f"Processed:\n{res}")
|
217 |
+
|
218 |
+
# flag ns.qadone
|
219 |
+
ns.ingest_done = True
|
220 |
+
ns.files_info = res
|
221 |
+
|
222 |
+
# ns.qa = load_qa()
|
223 |
+
|
224 |
+
# return [str(elm) for elm in res]
|
225 |
+
return file_paths
|
226 |
+
|
227 |
+
# return ingest(file_paths)
|
228 |
+
|
229 |
+
|
230 |
+
def ingest(
|
231 |
+
file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type=None
|
232 |
+
):
|
233 |
+
"""Gen Chroma db.
|
234 |
+
|
235 |
+
torch.cuda.is_available()
|
236 |
+
|
237 |
+
file_paths =
|
238 |
+
['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
|
239 |
+
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
|
240 |
+
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
|
241 |
+
"""
|
242 |
+
logger.info("\n\t Doing ingest...")
|
243 |
+
|
244 |
+
if device_type is None:
|
245 |
+
if torch.cuda.is_available():
|
246 |
+
device_type = "cuda"
|
247 |
+
else:
|
248 |
+
device_type = "cpu"
|
249 |
+
|
250 |
+
if device_type in ["cpu", "CPU"]:
|
251 |
+
device = "cpu"
|
252 |
+
elif device_type in ["mps", "MPS"]:
|
253 |
+
device = "mps"
|
254 |
+
else:
|
255 |
+
device = "cuda"
|
256 |
+
|
257 |
+
# Load documents and split in chunks
|
258 |
+
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
|
259 |
+
# documents = load_documents(SOURCE_DIRECTORY)
|
260 |
+
|
261 |
+
documents = []
|
262 |
+
for file_path in file_paths:
|
263 |
+
documents.append(load_single_document(f"{file_path}"))
|
264 |
+
|
265 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
266 |
+
texts = text_splitter.split_documents(documents)
|
267 |
+
|
268 |
+
logger.info(f"Loaded {len(documents)} documents ")
|
269 |
+
logger.info(f"Split into {len(texts)} chunks of text")
|
270 |
+
|
271 |
+
# Create embeddings
|
272 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
273 |
+
model_name=model_name, model_kwargs={"device": device}
|
274 |
+
)
|
275 |
+
|
276 |
+
db = Chroma.from_documents(
|
277 |
+
texts,
|
278 |
+
embeddings,
|
279 |
+
persist_directory=PERSIST_DIRECTORY,
|
280 |
+
client_settings=CHROMA_SETTINGS,
|
281 |
+
)
|
282 |
+
db.persist()
|
283 |
+
db = None
|
284 |
+
logger.info("Done ingest")
|
285 |
+
|
286 |
+
return [
|
287 |
+
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
|
288 |
+
for doc in documents
|
289 |
+
]
|
290 |
+
|
291 |
+
|
292 |
+
# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
|
293 |
+
# https://huggingface.co/TheBloke/vicuna-7B-1.1-HF
|
294 |
+
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
|
295 |
+
"""Gen a local llm.
|
296 |
+
|
297 |
+
localgpt run_localgpt
|
298 |
+
https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2
|
299 |
+
with torch.device(“cuda”):
|
300 |
+
model = AutoModelForCausalLM.from_pretrained(“gpt2-large”, torch_dtype=torch.float16)
|
301 |
+
|
302 |
+
model = BetterTransformer.transform(model)
|
303 |
+
"""
|
304 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_id)
|
305 |
+
if torch.cuda.is_available():
|
306 |
+
model = LlamaForCausalLM.from_pretrained(
|
307 |
+
model_id,
|
308 |
+
# load_in_8bit=True, # set these options if your GPU supports them!
|
309 |
+
# device_map=1 # "auto",
|
310 |
+
torch_dtype=torch.float16,
|
311 |
+
low_cpu_mem_usage=True,
|
312 |
+
)
|
313 |
+
else:
|
314 |
+
model = LlamaForCausalLM.from_pretrained(model_id)
|
315 |
+
|
316 |
+
pipe = pipeline(
|
317 |
+
"text-generation",
|
318 |
+
model=model,
|
319 |
+
tokenizer=tokenizer,
|
320 |
+
max_length=2048,
|
321 |
+
temperature=0,
|
322 |
+
top_p=0.95,
|
323 |
+
repetition_penalty=1.15,
|
324 |
+
)
|
325 |
+
|
326 |
+
local_llm = HuggingFacePipeline(pipeline=pipe)
|
327 |
+
return local_llm
|
328 |
+
|
329 |
+
|
330 |
+
def load_qa(device=None, model_name: str = "hkunlp/instructor-base"):
|
331 |
+
"""Gen qa."""
|
332 |
+
logger.info("Doing qa")
|
333 |
+
if device is None:
|
334 |
+
if torch.cuda.is_available():
|
335 |
+
device = "cuda"
|
336 |
+
else:
|
337 |
+
device = "cpu"
|
338 |
+
|
339 |
+
# device = 'cpu'
|
340 |
+
# model_name = "hkunlp/instructor-xl"
|
341 |
+
# model_name = "hkunlp/instructor-large"
|
342 |
+
# model_name = "hkunlp/instructor-base"
|
343 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
344 |
+
model_name=model_name, model_kwargs={"device": device}
|
345 |
+
)
|
346 |
+
# xl 4.96G, large 3.5G,
|
347 |
+
db = Chroma(
|
348 |
+
persist_directory=PERSIST_DIRECTORY,
|
349 |
+
embedding_function=embeddings,
|
350 |
+
client_settings=CHROMA_SETTINGS,
|
351 |
+
)
|
352 |
+
retriever = db.as_retriever()
|
353 |
+
|
354 |
+
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
355 |
+
|
356 |
+
qa = RetrievalQA.from_chain_type(
|
357 |
+
llm=llm,
|
358 |
+
chain_type="stuff",
|
359 |
+
retriever=retriever,
|
360 |
+
return_source_documents=True,
|
361 |
+
)
|
362 |
+
|
363 |
+
logger.info("Done qa")
|
364 |
+
|
365 |
+
return qa
|
366 |
+
|
367 |
+
|
368 |
+
def main1():
|
369 |
+
"""Lump codes"""
|
370 |
+
with gr.Blocks() as demo:
|
371 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
372 |
+
iface.launch()
|
373 |
+
|
374 |
+
demo.launch()
|
375 |
+
|
376 |
+
|
377 |
+
def main():
|
378 |
+
"""Do blocks."""
|
379 |
+
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
|
380 |
+
|
381 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
382 |
+
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
|
383 |
+
|
384 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
385 |
+
# name = gr.Textbox(label="Name")
|
386 |
+
# greet_btn = gr.Button("Submit")
|
387 |
+
# output = gr.Textbox(label="Output Box")
|
388 |
+
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
|
389 |
+
with gr.Accordion("Info", open=False):
|
390 |
+
_ = """
|
391 |
+
# localgpt
|
392 |
+
Talk to your docs (.pdf, .docx, .epub, .txt .md and
|
393 |
+
other text docs). It
|
394 |
+
takes quite a while to ingest docs (10-30 min. depending
|
395 |
+
on net, RAM, CPU etc.).
|
396 |
+
|
397 |
+
Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])
|
398 |
+
|
399 |
+
Homepage: https://huggingface.co/spaces/mikeee/localgpt
|
400 |
+
"""
|
401 |
+
gr.Markdown(dedent(_))
|
402 |
+
|
403 |
+
# with gr.Accordion("Upload files", open=True):
|
404 |
+
with gr.Tab("Upload files"):
|
405 |
+
# Upload files and generate embeddings database
|
406 |
+
file_output = gr.File()
|
407 |
+
upload_button = gr.UploadButton(
|
408 |
+
"Click to upload files",
|
409 |
+
# file_types=["*.pdf", "*.epub", "*.docx"],
|
410 |
+
file_count="multiple",
|
411 |
+
)
|
412 |
+
upload_button.upload(upload_files, upload_button, file_output)
|
413 |
+
|
414 |
+
with gr.Tab("Query docs"):
|
415 |
+
# interactive chat
|
416 |
+
chatbot = gr.Chatbot()
|
417 |
+
msg = gr.Textbox(label="Query")
|
418 |
+
clear = gr.Button("Clear")
|
419 |
+
|
420 |
+
def respond(message, chat_history):
|
421 |
+
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
|
422 |
+
if ns.ingest_done is None: # no files processed yet
|
423 |
+
bot_message = "Upload some file(s) for processing first."
|
424 |
+
chat_history.append((message, bot_message))
|
425 |
+
return "", chat_history
|
426 |
+
|
427 |
+
if not ns.ingest_done: # embedding database not doen yet
|
428 |
+
bot_message = (
|
429 |
+
"Waiting for ingest (embedding) to finish, "
|
430 |
+
"be patient... You can switch the 'Upload files' "
|
431 |
+
"Tab to check"
|
432 |
+
)
|
433 |
+
chat_history.append((message, bot_message))
|
434 |
+
return "", chat_history
|
435 |
+
|
436 |
+
if ns.qa is None: # load qa one time
|
437 |
+
logger.info("Loading qa, need to do just one time.")
|
438 |
+
ns.qa = load_qa()
|
439 |
+
|
440 |
+
try:
|
441 |
+
res = ns.qa(message)
|
442 |
+
answer, docs = res["result"], res["source_documents"]
|
443 |
+
bot_message = f"{answer} ({docs})"
|
444 |
+
except Exception as exc:
|
445 |
+
logger.error(exc)
|
446 |
+
bot_message = f"bummer! {exc}"
|
447 |
+
|
448 |
+
chat_history.append((message, bot_message))
|
449 |
+
|
450 |
+
return "", chat_history
|
451 |
+
|
452 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
453 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
454 |
+
|
455 |
+
try:
|
456 |
+
from google import colab # noqa
|
457 |
+
|
458 |
+
share = True # start share when in colab
|
459 |
+
except Exception:
|
460 |
+
share = False
|
461 |
+
demo.launch(share=share)
|
462 |
+
|
463 |
+
|
464 |
+
if __name__ == "__main__":
|
465 |
+
main()
|
466 |
+
|
467 |
+
_ = """
|
468 |
+
run_localgpt
|
469 |
+
device = 'cpu'
|
470 |
+
model_name = "hkunlp/instructor-xl"
|
471 |
+
model_name = "hkunlp/instructor-large"
|
472 |
+
model_name = "hkunlp/instructor-base"
|
473 |
+
embeddings = HuggingFaceInstructEmbeddings(
|
474 |
+
model_name=,
|
475 |
+
model_kwargs={"device": device}
|
476 |
+
)
|
477 |
+
# xl 4.96G, large 3.5G,
|
478 |
+
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
|
479 |
+
retriever = db.as_retriever()
|
480 |
+
|
481 |
+
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
482 |
+
|
483 |
+
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
|
484 |
+
|
485 |
+
query = 'a'
|
486 |
+
res = qa(query)
|
487 |
+
|
488 |
+
---
|
489 |
+
https://www.linkedin.com/pulse/build-qa-bot-over-private-data-openai-langchain-leo-wang
|
490 |
+
|
491 |
+
history = [】
|
492 |
+
|
493 |
+
def user(user_message, history):
|
494 |
+
# Get response from QA chain
|
495 |
+
response = qa({"question": user_message, "chat_history": history})
|
496 |
+
# Append user message and response to chat history
|
497 |
+
history.append((user_message, response["answer"]))]
|
498 |
+
|
499 |
+
---
|
500 |
+
https://llamahub.ai/l/file-unstructured
|
501 |
+
|
502 |
+
from pathlib import Path
|
503 |
+
from llama_index import download_loader
|
504 |
+
|
505 |
+
UnstructuredReader = download_loader("UnstructuredReader")
|
506 |
+
|
507 |
+
loader = UnstructuredReader()
|
508 |
+
documents = loader.load_data(file=Path('./10k_filing.html'))
|
509 |
+
|
510 |
+
# --
|
511 |
+
from pathlib import Path
|
512 |
+
from llama_index import download_loader
|
513 |
+
|
514 |
+
# SimpleDirectoryReader = download_loader("SimpleDirectoryReader")
|
515 |
+
# FileNotFoundError: [Errno 2] No such file or directory
|
516 |
+
|
517 |
+
documents = SimpleDirectoryReader('./data').load_data()
|
518 |
+
|
519 |
+
loader = SimpleDirectoryReader('./data', file_extractor={
|
520 |
+
".pdf": "UnstructuredReader",
|
521 |
+
".html": "UnstructuredReader",
|
522 |
+
".eml": "UnstructuredReader",
|
523 |
+
".pptx": "PptxReader"
|
524 |
+
})
|
525 |
+
documents = loader.load_data()
|
526 |
+
"""
|
app.py
CHANGED
@@ -1,9 +1,12 @@
|
|
1 |
-
"""Refer to
|
2 |
-
|
3 |
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
|
4 |
|
5 |
https://python.langchain.com/en/latest/getting_started/tutorials.html
|
6 |
|
|
|
|
|
|
|
7 |
unstructured: python-magic python-docx python-pptx
|
8 |
from langchain.document_loaders import UnstructuredHTMLLoader
|
9 |
|
@@ -34,6 +37,7 @@ db = Chroma.from_documents(
|
|
34 |
client_settings=CHROMA_SETTINGS,
|
35 |
)
|
36 |
db.persist()
|
|
|
37 |
|
38 |
# 中国共产党章程.txt qa
|
39 |
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt
|
@@ -43,19 +47,28 @@ CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s
|
|
43 |
Wall time: 1min 37s
|
44 |
|
45 |
"""
|
46 |
-
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member
|
47 |
import os
|
48 |
import time
|
|
|
|
|
49 |
from pathlib import Path
|
|
|
50 |
from textwrap import dedent
|
51 |
from types import SimpleNamespace
|
|
|
52 |
|
53 |
import gradio as gr
|
|
|
54 |
import torch
|
|
|
55 |
from charset_normalizer import detect
|
56 |
from chromadb.config import Settings
|
57 |
-
|
58 |
-
from langchain.
|
|
|
|
|
|
|
59 |
from langchain.docstore.document import Document
|
60 |
from langchain.document_loaders import (
|
61 |
CSVLoader,
|
@@ -63,30 +76,26 @@ from langchain.document_loaders import (
|
|
63 |
PDFMinerLoader,
|
64 |
TextLoader,
|
65 |
)
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
70 |
from langchain.text_splitter import (
|
71 |
CharacterTextSplitter,
|
72 |
RecursiveCharacterTextSplitter,
|
73 |
)
|
74 |
-
|
75 |
-
# FAISS instead of PineCone
|
76 |
from langchain.vectorstores import FAISS, Chroma
|
77 |
from loguru import logger
|
78 |
-
from PyPDF2 import PdfReader
|
|
|
79 |
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
|
80 |
|
81 |
-
|
82 |
-
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
# load possible env such as OPENAI_API_KEY
|
87 |
-
# from dotenv import load_dotenv
|
88 |
-
|
89 |
-
# load_dotenv()load_dotenv()
|
90 |
|
91 |
# fix timezone
|
92 |
os.environ["TZ"] = "Asia/Shanghai"
|
@@ -96,6 +105,14 @@ except Exception:
|
|
96 |
# Windows
|
97 |
logger.warning("Windows, cant run time.tzset()")
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
ROOT_DIRECTORY = Path(__file__).parent
|
100 |
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
|
101 |
|
@@ -105,59 +122,82 @@ CHROMA_SETTINGS = Settings(
|
|
105 |
persist_directory=PERSIST_DIRECTORY,
|
106 |
anonymized_telemetry=False,
|
107 |
)
|
108 |
-
ns = SimpleNamespace(qa=None, ingest_done=None, files_info=None)
|
109 |
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if encoding is None:
|
118 |
logger.warning(
|
119 |
f" {file_path}'s encoding is None "
|
120 |
"Something is fishy, return empty str "
|
121 |
)
|
122 |
-
return Document(page_content="", metadata={"source": file_path})
|
123 |
-
|
124 |
try:
|
125 |
loader = TextLoader(file_path, encoding=encoding)
|
126 |
except Exception as exc:
|
127 |
logger.warning(f" {exc}, return dummy ")
|
128 |
-
return Document(page_content="", metadata={"source": file_path})
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
132 |
elif file_path.endswith(".csv"):
|
133 |
-
|
|
|
|
|
|
|
|
|
134 |
elif Path(file_path).suffix in [".docx"]:
|
135 |
try:
|
136 |
loader = Docx2txtLoader(file_path)
|
137 |
except Exception as exc:
|
138 |
logger.error(f" {file_path} errors: {exc}")
|
139 |
-
return Document(page_content="", metadata={"source": file_path})
|
140 |
-
elif Path(file_path).suffix in [".epub"]:
|
141 |
try:
|
142 |
-
_ = epub2txt(file_path)
|
|
|
143 |
except Exception as exc:
|
144 |
logger.error(f" {file_path} errors: {exc}")
|
145 |
-
return Document(page_content="", metadata={"source": file_path})
|
146 |
-
return Document(page_content=_, metadata={"source": file_path})
|
147 |
else:
|
148 |
if encoding is None:
|
149 |
logger.warning(
|
150 |
f" {file_path}'s encoding is None "
|
151 |
"Likely binary files, return empty str "
|
152 |
)
|
153 |
-
return Document(page_content="", metadata={"source": file_path})
|
154 |
try:
|
155 |
loader = TextLoader(file_path)
|
156 |
except Exception as exc:
|
157 |
logger.error(f" {exc}, returnning empty string")
|
158 |
-
return Document(page_content="", metadata={"source": file_path})
|
159 |
|
160 |
-
return loader.load()
|
161 |
|
162 |
|
163 |
def get_pdf_text(pdf_docs):
|
@@ -170,25 +210,59 @@ def get_pdf_text(pdf_docs):
|
|
170 |
return text
|
171 |
|
172 |
|
173 |
-
def get_text_chunks(text):
|
174 |
"""docs-chat."""
|
175 |
text_splitter = CharacterTextSplitter(
|
176 |
-
separator="\n", chunk_size=
|
177 |
)
|
178 |
chunks = text_splitter.split_text(text)
|
179 |
return chunks
|
180 |
|
181 |
|
182 |
-
def get_vectorstore(
|
183 |
-
|
|
|
|
|
|
|
|
|
184 |
# embeddings = OpenAIEmbeddings()
|
|
|
185 |
model_name = "hkunlp/instructor-xl"
|
186 |
model_name = "hkunlp/instructor-large"
|
187 |
model_name = "hkunlp/instructor-base"
|
|
|
|
|
|
|
|
|
188 |
logger.info(f"Loading {model_name}")
|
189 |
-
embeddings =
|
190 |
logger.info(f"Done loading {model_name}")
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
logger.info(
|
193 |
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
|
194 |
)
|
@@ -211,15 +285,7 @@ def upload_files(files):
|
|
211 |
file_paths = [file.name for file in files]
|
212 |
logger.info(file_paths)
|
213 |
|
214 |
-
ns.
|
215 |
-
res = ingest(file_paths)
|
216 |
-
logger.info(f"Processed:\n{res}")
|
217 |
-
|
218 |
-
# flag ns.qadone
|
219 |
-
ns.ingest_done = True
|
220 |
-
ns.files_info = res
|
221 |
-
|
222 |
-
# ns.qa = load_qa()
|
223 |
|
224 |
# return [str(elm) for elm in res]
|
225 |
return file_paths
|
@@ -227,19 +293,63 @@ def upload_files(files):
|
|
227 |
# return ingest(file_paths)
|
228 |
|
229 |
|
230 |
-
def
|
231 |
-
file_paths
|
|
|
232 |
):
|
233 |
-
"""
|
|
|
|
|
234 |
|
235 |
-
|
236 |
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
logger.info("\n\t Doing ingest...")
|
|
|
|
|
|
|
|
|
243 |
|
244 |
if device_type is None:
|
245 |
if torch.cuda.is_available():
|
@@ -260,33 +370,68 @@ def ingest(
|
|
260 |
|
261 |
documents = []
|
262 |
for file_path in file_paths:
|
263 |
-
documents.append(load_single_document(f"{file_path}"))
|
|
|
|
|
264 |
|
265 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
|
|
|
|
266 |
texts = text_splitter.split_documents(documents)
|
267 |
|
|
|
268 |
logger.info(f"Loaded {len(documents)} documents ")
|
269 |
logger.info(f"Split into {len(texts)} chunks of text")
|
270 |
|
271 |
# Create embeddings
|
272 |
-
embeddings = HuggingFaceInstructEmbeddings(
|
|
|
273 |
model_name=model_name, model_kwargs={"device": device}
|
274 |
)
|
275 |
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
|
|
|
|
|
|
|
|
281 |
)
|
282 |
-
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
logger.info("Done ingest")
|
285 |
|
286 |
-
|
287 |
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
|
288 |
for doc in documents
|
289 |
]
|
|
|
|
|
|
|
290 |
|
291 |
|
292 |
# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
|
@@ -327,7 +472,7 @@ def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
|
|
327 |
return local_llm
|
328 |
|
329 |
|
330 |
-
def load_qa(device=None, model_name: str =
|
331 |
"""Gen qa."""
|
332 |
logger.info("Doing qa")
|
333 |
if device is None:
|
@@ -340,10 +485,12 @@ def load_qa(device=None, model_name: str = "hkunlp/instructor-base"):
|
|
340 |
# model_name = "hkunlp/instructor-xl"
|
341 |
# model_name = "hkunlp/instructor-large"
|
342 |
# model_name = "hkunlp/instructor-base"
|
343 |
-
embeddings = HuggingFaceInstructEmbeddings(
|
|
|
344 |
model_name=model_name, model_kwargs={"device": device}
|
345 |
)
|
346 |
# xl 4.96G, large 3.5G,
|
|
|
347 |
db = Chroma(
|
348 |
persist_directory=PERSIST_DIRECTORY,
|
349 |
embedding_function=embeddings,
|
@@ -351,117 +498,175 @@ def load_qa(device=None, model_name: str = "hkunlp/instructor-base"):
|
|
351 |
)
|
352 |
retriever = db.as_retriever()
|
353 |
|
354 |
-
|
|
|
355 |
|
|
|
356 |
qa = RetrievalQA.from_chain_type(
|
357 |
-
llm=llm,
|
358 |
-
|
359 |
-
|
|
|
360 |
)
|
361 |
|
362 |
-
|
363 |
|
364 |
return qa
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
|
367 |
def main1():
|
368 |
-
"""Lump codes"""
|
369 |
-
with gr.Blocks() as
|
370 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
371 |
iface.launch()
|
372 |
|
373 |
-
|
374 |
|
375 |
|
376 |
-
|
377 |
-
"""Do blocks."""
|
378 |
-
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
|
379 |
|
380 |
-
|
381 |
-
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
395 |
|
396 |
-
|
397 |
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
file_output = gr.File()
|
|
|
|
|
406 |
upload_button = gr.UploadButton(
|
407 |
-
"Click to upload
|
408 |
# file_types=["*.pdf", "*.epub", "*.docx"],
|
409 |
file_count="multiple",
|
410 |
)
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
|
|
|
|
|
|
|
|
|
|
454 |
try:
|
455 |
-
from google import colab # noqa
|
456 |
|
457 |
share = True # start share when in colab
|
458 |
except Exception:
|
459 |
share = False
|
460 |
-
demo.launch(share=share)
|
461 |
-
|
462 |
-
|
463 |
-
if __name__ == "__main__":
|
464 |
-
main()
|
465 |
|
466 |
_ = """
|
467 |
run_localgpt
|
|
|
1 |
+
"""Refer to https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py.
|
2 |
+
|
3 |
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
|
4 |
|
5 |
https://python.langchain.com/en/latest/getting_started/tutorials.html
|
6 |
|
7 |
+
gradio.Progress example:
|
8 |
+
https://colab.research.google.com/github/gradio-app/gradio/blob/main/demo/progress/run.ipynb#scrollTo=2.8891853944186117e%2B38
|
9 |
+
|
10 |
unstructured: python-magic python-docx python-pptx
|
11 |
from langchain.document_loaders import UnstructuredHTMLLoader
|
12 |
|
|
|
37 |
client_settings=CHROMA_SETTINGS,
|
38 |
)
|
39 |
db.persist()
|
40 |
+
est. 1min/100 text1
|
41 |
|
42 |
# 中国共产党章程.txt qa
|
43 |
https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt
|
|
|
47 |
Wall time: 1min 37s
|
48 |
|
49 |
"""
|
50 |
+
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member, too-many-branches, unused-variable, too-many-arguments, global-statement
|
51 |
import os
|
52 |
import time
|
53 |
+
from copy import deepcopy
|
54 |
+
from math import ceil
|
55 |
from pathlib import Path
|
56 |
+
from tempfile import _TemporaryFileWrapper
|
57 |
from textwrap import dedent
|
58 |
from types import SimpleNamespace
|
59 |
+
from typing import List
|
60 |
|
61 |
import gradio as gr
|
62 |
+
import more_itertools as mit
|
63 |
import torch
|
64 |
+
from about_time import about_time
|
65 |
from charset_normalizer import detect
|
66 |
from chromadb.config import Settings
|
67 |
+
|
68 |
+
# from langchain.embeddings import HuggingFaceInstructEmbeddings
|
69 |
+
# from langchain.llms import HuggingFacePipeline
|
70 |
+
# from epub2txt import epub2txt
|
71 |
+
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
72 |
from langchain.docstore.document import Document
|
73 |
from langchain.document_loaders import (
|
74 |
CSVLoader,
|
|
|
76 |
PDFMinerLoader,
|
77 |
TextLoader,
|
78 |
)
|
79 |
+
from langchain.embeddings import (
|
80 |
+
HuggingFaceInstructEmbeddings,
|
81 |
+
SentenceTransformerEmbeddings,
|
82 |
+
)
|
83 |
+
from langchain.llms import HuggingFacePipeline, OpenAI
|
84 |
+
from langchain.memory import ConversationBufferMemory
|
85 |
from langchain.text_splitter import (
|
86 |
CharacterTextSplitter,
|
87 |
RecursiveCharacterTextSplitter,
|
88 |
)
|
|
|
|
|
89 |
from langchain.vectorstores import FAISS, Chroma
|
90 |
from loguru import logger
|
91 |
+
from PyPDF2 import PdfReader
|
92 |
+
from tqdm import tqdm
|
93 |
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
|
94 |
|
95 |
+
from epub_loader import EpubLoader
|
96 |
+
from load_api_key import load_api_key, pk_base, sk_base
|
97 |
|
98 |
+
MODEL_NAME = "paraphrase-multilingual-mpnet-base-v2" # 1.11G
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
# fix timezone
|
101 |
os.environ["TZ"] = "Asia/Shanghai"
|
|
|
105 |
# Windows
|
106 |
logger.warning("Windows, cant run time.tzset()")
|
107 |
|
108 |
+
api_key = load_api_key()
|
109 |
+
if api_key is not None:
|
110 |
+
os.environ.setdefault("OPENAI_API_KEY", api_key)
|
111 |
+
if api_key.startswith("sk-"):
|
112 |
+
os.environ.setdefault("OPENAI_API_BASE", sk_base)
|
113 |
+
elif api_key.startswith("pk-"):
|
114 |
+
os.environ.setdefault("OPENAI_API_BASE", pk_base)
|
115 |
+
|
116 |
ROOT_DIRECTORY = Path(__file__).parent
|
117 |
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
|
118 |
|
|
|
122 |
persist_directory=PERSIST_DIRECTORY,
|
123 |
anonymized_telemetry=False,
|
124 |
)
|
|
|
125 |
|
126 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
127 |
|
128 |
+
ns_initial = SimpleNamespace(
|
129 |
+
qa=None,
|
130 |
+
ingest_done=None,
|
131 |
+
files_info=None,
|
132 |
+
files_uploaded=[],
|
133 |
+
db_ready=None,
|
134 |
+
)
|
135 |
+
ns = deepcopy(ns_initial)
|
136 |
+
|
137 |
+
def load_single_document(file_path: str | Path) -> List[Document]:
|
138 |
+
"""Loads a single document from a file path."""
|
139 |
+
try:
|
140 |
+
_ = Path(file_path).read_bytes()
|
141 |
+
encoding = detect(_).get("encoding")
|
142 |
+
if encoding is not None:
|
143 |
+
encoding = str(encoding)
|
144 |
+
except Exception as exc:
|
145 |
+
logger.error(f"{file_path}: {exc}")
|
146 |
+
encoding = None
|
147 |
+
|
148 |
+
file_path = Path(file_path).as_posix()
|
149 |
+
|
150 |
+
if Path(file_path).suffix in [".txt"]:
|
151 |
if encoding is None:
|
152 |
logger.warning(
|
153 |
f" {file_path}'s encoding is None "
|
154 |
"Something is fishy, return empty str "
|
155 |
)
|
156 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
|
|
157 |
try:
|
158 |
loader = TextLoader(file_path, encoding=encoding)
|
159 |
except Exception as exc:
|
160 |
logger.warning(f" {exc}, return dummy ")
|
161 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
162 |
+
elif Path(file_path).suffix in [".pdf"]:
|
163 |
+
try:
|
164 |
+
loader = PDFMinerLoader(file_path)
|
165 |
+
except Exception as exc:
|
166 |
+
logger.error(exc)
|
167 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
168 |
elif file_path.endswith(".csv"):
|
169 |
+
try:
|
170 |
+
loader = CSVLoader(file_path)
|
171 |
+
except Exception as exc:
|
172 |
+
logger.error(exc)
|
173 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
174 |
elif Path(file_path).suffix in [".docx"]:
|
175 |
try:
|
176 |
loader = Docx2txtLoader(file_path)
|
177 |
except Exception as exc:
|
178 |
logger.error(f" {file_path} errors: {exc}")
|
179 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
180 |
+
elif Path(file_path).suffix in [".epub"]:
|
181 |
try:
|
182 |
+
# _ = epub2txt(file_path)
|
183 |
+
loader = EpubLoader(file_path)
|
184 |
except Exception as exc:
|
185 |
logger.error(f" {file_path} errors: {exc}")
|
186 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
|
|
187 |
else:
|
188 |
if encoding is None:
|
189 |
logger.warning(
|
190 |
f" {file_path}'s encoding is None "
|
191 |
"Likely binary files, return empty str "
|
192 |
)
|
193 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
194 |
try:
|
195 |
loader = TextLoader(file_path)
|
196 |
except Exception as exc:
|
197 |
logger.error(f" {exc}, returnning empty string")
|
198 |
+
return [Document(page_content="", metadata={"source": file_path})]
|
199 |
|
200 |
+
return loader.load() # use extend when combining
|
201 |
|
202 |
|
203 |
def get_pdf_text(pdf_docs):
|
|
|
210 |
return text
|
211 |
|
212 |
|
213 |
+
def get_text_chunks(text, chunk_size=1000):
|
214 |
"""docs-chat."""
|
215 |
text_splitter = CharacterTextSplitter(
|
216 |
+
separator="\n", chunk_size=chunk_size, chunk_overlap=200, length_function=len
|
217 |
)
|
218 |
chunks = text_splitter.split_text(text)
|
219 |
return chunks
|
220 |
|
221 |
|
222 |
+
def get_vectorstore(
|
223 |
+
text_chunks,
|
224 |
+
vectorstore=None,
|
225 |
+
persist=True,
|
226 |
+
):
|
227 |
+
"""Gne vectorstore."""
|
228 |
# embeddings = OpenAIEmbeddings()
|
229 |
+
# for HuggingFaceInstructEmbeddings
|
230 |
model_name = "hkunlp/instructor-xl"
|
231 |
model_name = "hkunlp/instructor-large"
|
232 |
model_name = "hkunlp/instructor-base"
|
233 |
+
|
234 |
+
# embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
|
235 |
+
|
236 |
+
model_name = MODEL_NAME
|
237 |
logger.info(f"Loading {model_name}")
|
238 |
+
embeddings = SentenceTransformerEmbeddings(model_name=model_name)
|
239 |
logger.info(f"Done loading {model_name}")
|
240 |
|
241 |
+
if vectorstore is None:
|
242 |
+
vectorstore = "chroma"
|
243 |
+
|
244 |
+
if vectorstore.lower() in ["chroma"]:
|
245 |
+
logger.info(
|
246 |
+
"Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=embeddings)"
|
247 |
+
)
|
248 |
+
if persist:
|
249 |
+
vectorstore = Chroma.from_texts(
|
250 |
+
texts=text_chunks,
|
251 |
+
embedding=embeddings,
|
252 |
+
persist_directory=PERSIST_DIRECTORY,
|
253 |
+
client_settings=CHROMA_SETTINGS,
|
254 |
+
)
|
255 |
+
else:
|
256 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings)
|
257 |
+
|
258 |
+
logger.info(
|
259 |
+
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
|
260 |
+
)
|
261 |
+
|
262 |
+
return vectorstore
|
263 |
+
|
264 |
+
# if vectorstore.lower() not in ['chroma']
|
265 |
+
# TODO handle other cases
|
266 |
logger.info(
|
267 |
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
|
268 |
)
|
|
|
285 |
file_paths = [file.name for file in files]
|
286 |
logger.info(file_paths)
|
287 |
|
288 |
+
ns.files_uploaded = file_paths
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
# return [str(elm) for elm in res]
|
291 |
return file_paths
|
|
|
293 |
# return ingest(file_paths)
|
294 |
|
295 |
|
296 |
+
def process_files(
|
297 |
+
# file_paths,
|
298 |
+
progress=gr.Progress()
|
299 |
):
|
300 |
+
"""Process uploaded files."""
|
301 |
+
if not ns.files_uploaded:
|
302 |
+
return f"No files uploaded: {ns.files_uploaded}"
|
303 |
|
304 |
+
logger.debug(f"{ns.files_uploaded}")
|
305 |
|
306 |
+
logger.info(f"ingest({ns.files_uploaded})...")
|
307 |
+
|
308 |
+
# imgs = [None] * 24
|
309 |
+
# for img in progress.tqdm(imgs, desc="Loading from list"):
|
310 |
+
# time.sleep(0.1)
|
311 |
+
|
312 |
+
imgs = [[None] * 8] * 3
|
313 |
+
for img_set in progress.tqdm(imgs, desc="Nested list"):
|
314 |
+
time.sleep(.2)
|
315 |
+
for img in progress.tqdm(img_set, desc="inner list"):
|
316 |
+
time.sleep(10.1)
|
317 |
+
|
318 |
+
return f"done file(s): {ns.files_info}"
|
319 |
+
# return f"done file(s)"
|
320 |
+
|
321 |
+
_ = """
|
322 |
+
documents = []
|
323 |
+
for file_path in progress.tqdm(ns.files_uploaded, desc="Reading file(s)"):
|
324 |
+
logger.debug(f"Doing {file_path}")
|
325 |
+
try:
|
326 |
+
documents.extend(load_single_document(f"{file_path}"))
|
327 |
+
logger.debug("Done reading files.")
|
328 |
+
except Exception as exc:
|
329 |
+
logger.error(f"{file_path}: {exc}")
|
330 |
+
# """
|
331 |
+
|
332 |
+
ns.ingest_done = True
|
333 |
+
|
334 |
+
# ns.qa = load_qa()
|
335 |
+
|
336 |
+
return f"done file(s): {ns.files_info}"
|
337 |
+
|
338 |
+
|
339 |
+
# pylint disable=unused-argument
|
340 |
+
def ingest(
|
341 |
+
file_paths: list[str | Path],
|
342 |
+
model_name: str = MODEL_NAME,
|
343 |
+
device_type=None,
|
344 |
+
chunk_size: int = 256,
|
345 |
+
chunk_overlap: int = 50,
|
346 |
+
):
|
347 |
+
"""Gen Chroma db."""
|
348 |
logger.info("\n\t Doing ingest...")
|
349 |
+
logger.debug(f" file_paths: {file_paths}")
|
350 |
+
logger.debug(f"type of file_paths: {type(file_paths)}")
|
351 |
+
|
352 |
+
# raise SystemExit(0)
|
353 |
|
354 |
if device_type is None:
|
355 |
if torch.cuda.is_available():
|
|
|
370 |
|
371 |
documents = []
|
372 |
for file_path in file_paths:
|
373 |
+
# documents.append(load_single_document(f"{file_path}"))
|
374 |
+
logger.debug(f"Doing {file_path}")
|
375 |
+
documents.extend(load_single_document(f"{file_path}"))
|
376 |
|
377 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
378 |
+
chunk_size=chunk_size, chunk_overlap=chunk_overlap
|
379 |
+
)
|
380 |
texts = text_splitter.split_documents(documents)
|
381 |
|
382 |
+
logger.info(f"Loaded {len(file_paths)} files ")
|
383 |
logger.info(f"Loaded {len(documents)} documents ")
|
384 |
logger.info(f"Split into {len(texts)} chunks of text")
|
385 |
|
386 |
# Create embeddings
|
387 |
+
# embeddings = HuggingFaceInstructEmbeddings(
|
388 |
+
embeddings = SentenceTransformerEmbeddings(
|
389 |
model_name=model_name, model_kwargs={"device": device}
|
390 |
)
|
391 |
|
392 |
+
# https://stackoverflow.com/questions/76048941/how-to-combine-two-chroma-databases
|
393 |
+
# db = Chroma(persist_directory=chroma_directory, embedding_function=embedding)
|
394 |
+
# db.add_documents(documents=texts1)
|
395 |
+
|
396 |
+
# mit.chunked_even(texts, 100)
|
397 |
+
db = Chroma(
|
398 |
+
# persist_directory=PERSIST_DIRECTORY,
|
399 |
+
embedding_function=embeddings,
|
400 |
+
# client_settings=CHROMA_SETTINGS,
|
401 |
)
|
402 |
+
# for text in progress.tqdm(
|
403 |
+
for text in tqdm(
|
404 |
+
mit.chunked_even(texts, 101), total=ceil(len(texts) / 101)
|
405 |
+
):
|
406 |
+
db.add_documents(documents=text)
|
407 |
+
|
408 |
+
_ = """
|
409 |
+
with about_time() as atime: # type: ignore
|
410 |
+
db = Chroma.from_documents(
|
411 |
+
texts,
|
412 |
+
embeddings,
|
413 |
+
persist_directory=PERSIST_DIRECTORY,
|
414 |
+
client_settings=CHROMA_SETTINGS,
|
415 |
+
)
|
416 |
+
logger.info(f"Time spent: {atime.duration_human}") # type: ignore
|
417 |
+
"""
|
418 |
+
|
419 |
+
logger.info(f"persist_directory: {PERSIST_DIRECTORY}")
|
420 |
+
|
421 |
+
# db.persist()
|
422 |
+
# db = None
|
423 |
+
# ns.db = db
|
424 |
+
ns.qa = db
|
425 |
+
|
426 |
logger.info("Done ingest")
|
427 |
|
428 |
+
_ = [
|
429 |
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
|
430 |
for doc in documents
|
431 |
]
|
432 |
+
ns.files_info = _
|
433 |
+
|
434 |
+
return _
|
435 |
|
436 |
|
437 |
# TheBloke/Wizard-Vicuna-7B-Uncensored-HF
|
|
|
472 |
return local_llm
|
473 |
|
474 |
|
475 |
+
def load_qa(device=None, model_name: str = MODEL_NAME):
|
476 |
"""Gen qa."""
|
477 |
logger.info("Doing qa")
|
478 |
if device is None:
|
|
|
485 |
# model_name = "hkunlp/instructor-xl"
|
486 |
# model_name = "hkunlp/instructor-large"
|
487 |
# model_name = "hkunlp/instructor-base"
|
488 |
+
# embeddings = HuggingFaceInstructEmbeddings(
|
489 |
+
embeddings = SentenceTransformerEmbeddings(
|
490 |
model_name=model_name, model_kwargs={"device": device}
|
491 |
)
|
492 |
# xl 4.96G, large 3.5G,
|
493 |
+
|
494 |
db = Chroma(
|
495 |
persist_directory=PERSIST_DIRECTORY,
|
496 |
embedding_function=embeddings,
|
|
|
498 |
)
|
499 |
retriever = db.as_retriever()
|
500 |
|
501 |
+
# _ = """
|
502 |
+
# llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
|
503 |
|
504 |
+
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
|
505 |
qa = RetrievalQA.from_chain_type(
|
506 |
+
llm=llm,
|
507 |
+
chain_type="stuff",
|
508 |
+
retriever=retriever,
|
509 |
+
# return_source_documents=True,
|
510 |
)
|
511 |
|
512 |
+
# {"query": ..., "result": ..., "source_documents": ...}
|
513 |
|
514 |
return qa
|
515 |
|
516 |
+
# """
|
517 |
+
|
518 |
+
# pylint: disable=unreachable
|
519 |
+
|
520 |
+
# model = 'gpt-3.5-turbo', default text-davinci-003
|
521 |
+
# max_tokens: int = 256 max_retries: int = 6
|
522 |
+
# openai_api_key: Optional[str] = None,
|
523 |
+
# openai_api_base: Optional[str] = None,
|
524 |
+
|
525 |
+
# llm = OpenAI(temperature=0, max_tokens=0)
|
526 |
+
llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore
|
527 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
528 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
529 |
+
llm=llm,
|
530 |
+
# retriever=vectorstore.as_retriever(),
|
531 |
+
retriever=db.as_retriever(),
|
532 |
+
memory=memory,
|
533 |
+
)
|
534 |
+
|
535 |
+
logger.info("Done qa")
|
536 |
+
|
537 |
+
return conversation_chain
|
538 |
+
# memory.clear()
|
539 |
+
# response = conversation_chain({'question': user_question})
|
540 |
+
# response['question'], response['answer']
|
541 |
+
|
542 |
|
543 |
def main1():
|
544 |
+
"""Lump codes."""
|
545 |
+
with gr.Blocks() as demo1:
|
546 |
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
547 |
iface.launch()
|
548 |
|
549 |
+
demo1.launch()
|
550 |
|
551 |
|
552 |
+
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
|
|
|
|
|
553 |
|
554 |
+
openai_api_key = os.getenv("OPENAI_API_KEY")
|
555 |
+
logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}")
|
556 |
|
557 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
558 |
+
# name = gr.Textbox(label="Name")
|
559 |
+
# greet_btn = gr.Button("Submit")
|
560 |
+
# output = gr.Textbox(label="Output Box")
|
561 |
+
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
|
562 |
+
#
|
563 |
+
# ### layout ###
|
564 |
+
with gr.Accordion("Info", open=False):
|
565 |
+
_ = """
|
566 |
+
# localgpt
|
567 |
+
Talk to your docs (.pdf, .docx, .epub, .txt .md and
|
568 |
+
other text docs). It
|
569 |
+
takes quite a while to ingest docs (10-30 min. depending
|
570 |
+
on net, RAM, CPU etc.).
|
571 |
|
572 |
+
Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars])
|
573 |
|
574 |
+
Homepage: https://huggingface.co/spaces/mikeee/localgpt
|
575 |
+
"""
|
576 |
+
gr.Markdown(dedent(_))
|
577 |
|
578 |
+
with gr.Tab("Upload files"):
|
579 |
+
# Upload files and generate embeddings database
|
580 |
+
with gr.Row():
|
581 |
file_output = gr.File()
|
582 |
+
# file_output = gr.Text()
|
583 |
+
# file_output = gr.DataFrame()
|
584 |
upload_button = gr.UploadButton(
|
585 |
+
"Click to upload",
|
586 |
# file_types=["*.pdf", "*.epub", "*.docx"],
|
587 |
file_count="multiple",
|
588 |
)
|
589 |
+
with gr.Row():
|
590 |
+
text2 = gr.Textbox("Progress/Log")
|
591 |
+
process_btn = gr.Button("Click to process files")
|
592 |
+
reset_btn = gr.Button("Reset everything")
|
593 |
+
|
594 |
+
with gr.Tab("Query docs"):
|
595 |
+
# interactive chat
|
596 |
+
chatbot = gr.Chatbot()
|
597 |
+
msg = gr.Textbox(label="Query")
|
598 |
+
clear = gr.Button("Clear")
|
599 |
+
|
600 |
+
# actions
|
601 |
+
def reset_all():
|
602 |
+
"""Reset ns."""
|
603 |
+
global ns
|
604 |
+
ns = deepcopy(ns_initial)
|
605 |
+
return f"reset done: ns={ns}"
|
606 |
+
|
607 |
+
reset_btn.click(reset_all, [], text2)
|
608 |
+
|
609 |
+
upload_button.upload(upload_files, upload_button, file_output)
|
610 |
+
process_btn.click(process_files, [], text2)
|
611 |
+
|
612 |
+
def respond(message, chat_history):
|
613 |
+
"""Gen response."""
|
614 |
+
if ns.ingest_done is None: # no files processed yet
|
615 |
+
bot_message = "Upload some file(s) for processing first."
|
616 |
+
chat_history.append((message, bot_message))
|
617 |
+
return "", chat_history
|
618 |
+
|
619 |
+
if not ns.ingest_done: # embedding database not doen yet
|
620 |
+
bot_message = (
|
621 |
+
"Waiting for ingest (embedding) to finish, "
|
622 |
+
"be patient... You can switch the 'Upload files' "
|
623 |
+
"Tab to check"
|
624 |
+
)
|
625 |
+
chat_history.append((message, bot_message))
|
626 |
+
return "", chat_history
|
627 |
+
|
628 |
+
_ = """
|
629 |
+
if ns.qa is None: # load qa one time
|
630 |
+
logger.info("Loading qa, need to do just one time.")
|
631 |
+
ns.qa = load_qa()
|
632 |
+
logger.info("Done loading qa, need to do just one time.")
|
633 |
+
# """
|
634 |
+
if ns.qa is None:
|
635 |
+
bot_message = (
|
636 |
+
"Looks like the bot is not ready. "
|
637 |
+
"Try again later..."
|
638 |
+
)
|
639 |
+
chat_history.append((message, bot_message))
|
640 |
+
return "", chat_history
|
641 |
+
|
642 |
+
try:
|
643 |
+
res = ns.qa(message)
|
644 |
+
answer = res.get("result")
|
645 |
+
docs = res.get("source_documents")
|
646 |
+
if docs:
|
647 |
+
bot_message = f"{answer}\n({docs})"
|
648 |
+
else:
|
649 |
+
bot_message = f"{answer}"
|
650 |
+
except Exception as exc:
|
651 |
+
logger.error(exc)
|
652 |
+
bot_message = f"bummer! {exc}"
|
653 |
+
|
654 |
+
chat_history.append((message, bot_message))
|
655 |
+
|
656 |
+
return "", chat_history
|
657 |
|
658 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
659 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
660 |
+
|
661 |
+
if __name__ == "__main__":
|
662 |
+
# main()
|
663 |
try:
|
664 |
+
from google import colab # noqa # type: ignore
|
665 |
|
666 |
share = True # start share when in colab
|
667 |
except Exception:
|
668 |
share = False
|
669 |
+
demo.queue(concurrency_count=20).launch(share=share)
|
|
|
|
|
|
|
|
|
670 |
|
671 |
_ = """
|
672 |
run_localgpt
|
docs/test.sdlxliff
DELETED
The diff for this file is too large to render.
See raw diff
|
|
load_api_key.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Load sk-/pk- key."""
|
2 |
+
# pylint: disable=invalid-name
|
3 |
+
from os import getenv
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
sk_base = "https://api.openai.com/v1"
|
9 |
+
pk_base = "https://api.pawan.krd/v1"
|
10 |
+
|
11 |
+
|
12 |
+
def load_api_key(env_var: Optional[str] = None):
|
13 |
+
"""Load OPENAI_API_KEY/SK-/PK- key.
|
14 |
+
|
15 |
+
if env_var is None, load from .env
|
16 |
+
order: "OPENAI_API_KEY", SK_KEY, PK_KEY
|
17 |
+
else:
|
18 |
+
dotenv_values("env_var") | os.getenv("env_var")
|
19 |
+
"""
|
20 |
+
# with override=True .env has higher priority
|
21 |
+
# than os.get(...)
|
22 |
+
load_dotenv(override=True)
|
23 |
+
|
24 |
+
if env_var is not None:
|
25 |
+
return getenv(str(env_var))
|
26 |
+
|
27 |
+
_ = [
|
28 |
+
"OPENAI_API_KEY",
|
29 |
+
"SK_KEY",
|
30 |
+
"PK_KEY",
|
31 |
+
]
|
32 |
+
|
33 |
+
api_key = None
|
34 |
+
for api_key in map(getenv, _):
|
35 |
+
if api_key:
|
36 |
+
break
|
37 |
+
|
38 |
+
return api_key
|
package.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name": "localgpt",
|
3 |
+
"scripts": {
|
4 |
+
"start": "nodemon -w app.py -x run-s check run:app",
|
5 |
+
"run:app": "python app.py",
|
6 |
+
"run:app-w": "nodemon -w app.py -x python app.py",
|
7 |
+
"check-w": "nodemon -w app.py -x run-s isort format flake8 docstyle lint type:check",
|
8 |
+
"check": "run-s isort format flake8 docstyle lint type:check",
|
9 |
+
"isort": "isort --profile=black app.py",
|
10 |
+
"format": "black app.py",
|
11 |
+
"flake8": "flake8 --exit-zero app.py",
|
12 |
+
"docstyle": "pydocstyle --convention=google app.py",
|
13 |
+
"lint": "pylint app.py --disable=fixme",
|
14 |
+
"type:check": "pyright app.py"
|
15 |
+
},
|
16 |
+
"packageManager": "yarn@3.5.0",
|
17 |
+
"devDependencies": {
|
18 |
+
"run-all": "^1.0.1"
|
19 |
+
}
|
20 |
+
}
|
requirements.txt
CHANGED
@@ -26,4 +26,6 @@ epub2txt
|
|
26 |
docx2txt
|
27 |
|
28 |
about-time
|
29 |
-
openai
|
|
|
|
|
|
26 |
docx2txt
|
27 |
|
28 |
about-time
|
29 |
+
openai
|
30 |
+
more-itertools
|
31 |
+
tqdm
|
yarn.lock
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is generated by running "yarn install" inside your project.
|
2 |
+
# Manual changes might be lost - proceed with caution!
|
3 |
+
|
4 |
+
__metadata:
|
5 |
+
version: 6
|
6 |
+
cacheKey: 8
|
7 |
+
|
8 |
+
"localgpt@workspace:.":
|
9 |
+
version: 0.0.0-use.local
|
10 |
+
resolution: "localgpt@workspace:."
|
11 |
+
dependencies:
|
12 |
+
run-all: ^1.0.1
|
13 |
+
languageName: unknown
|
14 |
+
linkType: soft
|
15 |
+
|
16 |
+
"run-all@npm:^1.0.1":
|
17 |
+
version: 1.0.1
|
18 |
+
resolution: "run-all@npm:1.0.1"
|
19 |
+
bin:
|
20 |
+
run-all: lib/command.js
|
21 |
+
checksum: 3b38424af8b3637f5c4e8cf1d6421481c2fc15ec9d14899979ec2278c2bf6d5c27c9c58468bcbb1537acaf62868a3c80b34bb83093899625363d90339884f2e7
|
22 |
+
languageName: node
|
23 |
+
linkType: hard
|