ffreemt
Update chatbox
4f331cc
raw
history blame
10.5 kB
"""Refer to
https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py
and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py
https://python.langchain.com/en/latest/getting_started/tutorials.html
"""
# pylint: disable=broad-exception-caught, unused-import, invalid-name, line-too-long
import os
import time
from pathlib import Path
from types import SimpleNamespace
import gradio as gr
from charset_normalizer import detect
from chromadb.config import Settings
from langchain.chains import RetrievalQA
from langchain.docstore.document import Document
# Docx2txtLoader
from langchain.document_loaders import CSVLoader, PDFMinerLoader, TextLoader
# from constants import CHROMA_SETTINGS, SOURCE_DIRECTORY, PERSIST_DIRECTORY
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline
from langchain.text_splitter import (
CharacterTextSplitter,
RecursiveCharacterTextSplitter,
)
# FAISS instead of PineCone
from langchain.vectorstores import FAISS, Chroma
from loguru import logger
from PyPDF2 import PdfReader # localgpt
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
# import click
# from typing import List
# from utils import xlxs_to_csv
# load possible env such as OPENAI_API_KEY
# from dotenv import load_dotenv
# load_dotenv()load_dotenv()
# fix timezone
os.environ["TZ"] = "Asia/Shanghai"
try:
time.tzset() # type: ignore # pylint: disable=no-member
except Exception:
# Windows
logger.warning("Windows, cant run time.tzset()")
ROOT_DIRECTORY = Path(__file__).parent
PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db"
# Define the Chroma settings
CHROMA_SETTINGS = Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=PERSIST_DIRECTORY,
anonymized_telemetry=False,
)
ns = SimpleNamespace(qa=None)
def load_single_document(file_path: str | Path) -> Document:
"""ingest.py"""
# Loads a single document from a file path
# encoding = detect(open(file_path, "rb").read()).get("encoding", "utf-8")
encoding = detect(Path(file_path).read_bytes()).get("encoding", "utf-8")
if file_path.endswith(".txt"):
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Something is fishy, return empty str "
)
return Document(page_content="", metadata={"source": file_path})
try:
loader = TextLoader(file_path, encoding=encoding)
except Exception as exc:
logger.warning(f" {exc}, return dummy ")
return Document(page_content="", metadata={"source": file_path})
elif file_path.endswith(".pdf"):
loader = PDFMinerLoader(file_path)
elif file_path.endswith(".csv"):
loader = CSVLoader(file_path)
# elif file_path.endswith(".epub"): # for epub? epub2txt unstructured
else:
if encoding is None:
logger.warning(
f" {file_path}'s encoding is None "
"Likely binary files, return empty str "
)
return ""
try:
loader = TextLoader(file_path)
except Exception as exc:
logger.error(f" {exc}, returnning empty string")
return Document(page_content="", metadata={"source": file_path})
return loader.load()[0]
def get_pdf_text(pdf_docs):
"""docs-chat."""
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
"""docs-chat."""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
"""docs-chat."""
# embeddings = OpenAIEmbeddings()
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
logger.info(f"Loading {model_name}")
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name)
logger.info(f"Done loading {model_name}")
logger.info(
"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
logger.info(
"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)"
)
return vectorstore
def greet(name):
"""Test."""
logger.debug(f" name: [{name}] ")
return "Hello " + name + "!!"
def upload_files(files):
"""Upload files."""
file_paths = [file.name for file in files]
logger.info(file_paths)
res = ingest(file_paths)
logger.info("Processed:\n{res}")
del res
ns.qa = load_qa()
# return [str(elm) for elm in res]
return file_paths
# return ingest(file_paths)
def ingest(
file_paths: list[str | Path], model_name="hkunlp/instructor-base", device_type="cpu"
):
"""Gen Chroma db.
torch.cuda.is_available()
file_paths =
['C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\41b53dd5f203b423f2dced44eaf56e72508b7bbe\\app.py',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\9390755bb391abc530e71a3946a7b50d463ba0ef\\README.md',
'C:\\Users\\User\\AppData\\Local\\Temp\\gradio\\3341f9a410a60ffa57bf4342f3018a3de689f729\\requirements.txt']
"""
logger.info("Doing ingest...")
if device_type in ["cpu", "CPU"]:
device = "cpu"
elif device_type in ["mps", "MPS"]:
device = "mps"
else:
device = "cuda"
#  Load documents and split in chunks
# logger.info(f"Loading documents from {SOURCE_DIRECTORY}")
# documents = load_documents(SOURCE_DIRECTORY)
documents = []
for file_path in file_paths:
documents.append(load_single_document(f"{file_path}"))
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
texts = text_splitter.split_documents(documents)
logger.info(f"Loaded {len(documents)} documents ")
logger.info(f"Split into {len(texts)} chunks of text")
# Create embeddings
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
db = Chroma.from_documents(
texts,
embeddings,
persist_directory=PERSIST_DIRECTORY,
client_settings=CHROMA_SETTINGS,
)
db.persist()
db = None
logger.info("Done ingest")
return [
[Path(doc.metadata.get("source")).name, len(doc.page_content)]
for doc in documents
]
# TheBloke/vicuna-7B-1.1-GPTQ-4bit-128g
def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"):
"""Gen a local llm.
localgpt run_localgpt
"""
tokenizer = LlamaTokenizer.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(
model_id,
# load_in_8bit=True, # set these options if your GPU supports them!
# device_map=1#'auto',
# torch_dtype=torch.float16,
# low_cpu_mem_usage=True
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=2048,
temperature=0,
top_p=0.95,
repetition_penalty=1.15,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
return local_llm
def load_qa(device: str = "cpu", model_name: str = "hkunlp/instructor-base"):
"""Gen qa."""
logger.info("Doing qa")
# device = 'cpu'
# model_name = "hkunlp/instructor-xl"
# model_name = "hkunlp/instructor-large"
# model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=model_name, model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(
llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True
)
logger.info("Done qa")
return qa
def main1():
"""Lump codes"""
with gr.Blocks() as demo:
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()
demo.launch()
def main():
"""Do blocks."""
logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}")
openai_api_key = os.getenv("OPENAI_API_KEY")
logger.info(f"openai_api_key (hf space SECRETS/env): {openai_api_key}")
with gr.Blocks() as demo:
# name = gr.Textbox(label="Name")
# greet_btn = gr.Button("Submit")
# output = gr.Textbox(label="Output Box")
# greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet")
# Upload files and generate embeddings database
file_output = gr.File()
upload_button = gr.UploadButton(
"Click to upload files",
# file_types=["*.pdf", "*.epub", "*.docx"],
file_count="multiple",
)
upload_button.upload(upload_files, upload_button, file_output)
# interactive chat
chatbot = gr.Chatbot()
msg = gr.Textbox()
clear = gr.Button("Clear")
def respond(message, chat_history):
# bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
res = ns.qa(message)
answer, docs = res["result"], res["source_documents"]
bot_message = f"{answer} ({docs})"
chat_history.append((message, bot_message))
time.sleep(0.21)
return "", chat_history
msg.submit(respond, [msg, chatbot], [msg, chatbot])
clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()
if __name__ == "__main__":
main()
_ = """
run_localgpt
device = 'cpu'
model_name = "hkunlp/instructor-xl"
model_name = "hkunlp/instructor-large"
model_name = "hkunlp/instructor-base"
embeddings = HuggingFaceInstructEmbeddings(
model_name=,
model_kwargs={"device": device}
)
# xl 4.96G, large 3.5G,
db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embeddings, client_settings=CHROMA_SETTINGS)
retriever = db.as_retriever()
llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G?
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True)
query = 'a'
res = qa(query)
"""