mikeee's picture
Update app.py
9198178
raw
history blame
17.4 kB
"""Refer to https://github.com/abacaj/mpt-30B-inference/blob/main/download_model.py."""
# pylint: disable=invalid-name, missing-function-docstring, missing-class-docstring, redefined-outer-name, broad-except
import os
import time
from dataclasses import asdict, dataclass
from types import SimpleNamespace
import gradio as gr
from ctransformers import AutoConfig, AutoModelForCausalLM
from mcli import predict
from huggingface_hub import hf_hub_download
from loguru import logger
URL = os.getenv("URL", "")
MOSAICML_API_KEY = os.getenv("MOSAICML_API_KEY", "")
if URL is None:
raise ValueError("URL environment variable must be set")
if MOSAICML_API_KEY is None:
raise ValueError("git environment variable must be set")
ns = SimpleNamespace(response="")
def predict0(prompt, bot):
# logger.debug(f"{prompt=}, {bot=}, {timeout=}")
logger.debug(f"{prompt=}, {bot=}")
ns.response = ""
try:
user_prompt = prompt
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
for word in generator:
print(word, end="", flush=True)
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
bot = [(prompt, response)]
return prompt, bot
def predict_api(prompt):
logger.debug(f"{prompt=}")
ns.response = ""
try:
user_prompt = prompt
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
print(assistant_prefix, end=" ", flush=True)
response = ""
buff.update(value="diggin...")
for word in generator:
print(word, end="", flush=True)
response += word
ns.response = response
buff.update(value=response)
print("")
logger.debug(f"{response=}")
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
# bot = {"inputs": [response]}
# bot = [(prompt, response)]
return response
def download_mpt_quant(destination_folder: str, repo_id: str, model_filename: str):
local_path = os.path.abspath(destination_folder)
return hf_hub_download(
repo_id=repo_id,
filename=model_filename,
local_dir=local_path,
local_dir_use_symlinks=True,
)
@dataclass
class GenerationConfig:
temperature: float
top_k: int
top_p: float
repetition_penalty: float
max_new_tokens: int
seed: int
reset: bool
stream: bool
threads: int
stop: list[str]
def format_prompt(system_prompt: str, user_prompt: str):
"""format prompt based on: https://huggingface.co/spaces/mosaicml/mpt-30b-chat/blob/main/app.py"""
system_prompt = f"<|im_start|>system\n{system_prompt}<|im_end|>\n"
user_prompt = f"<|im_start|>user\n{user_prompt}<|im_end|>\n"
assistant_prompt = "<|im_start|>assistant\n"
return f"{system_prompt}{user_prompt}{assistant_prompt}"
def generate(
llm: AutoModelForCausalLM,
generation_config: GenerationConfig,
system_prompt: str,
user_prompt: str,
):
"""run model inference, will return a Generator if streaming is true"""
return llm(
format_prompt(
system_prompt,
user_prompt,
),
**asdict(generation_config),
)
class Chat:
default_system_prompt = "A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers."
system_format = "<|im_start|>system\n{}<|im_end|>\n"
def __init__(
self, system: str = None, user: str = None, assistant: str = None
) -> None:
if system is not None:
self.set_system_prompt(system)
else:
self.reset_system_prompt()
self.user = user if user else "<|im_start|>user\n{}<|im_end|>\n"
self.assistant = (
assistant if assistant else "<|im_start|>assistant\n{}<|im_end|>\n"
)
self.response_prefix = self.assistant.split("{}", maxsplit=1)[0]
def set_system_prompt(self, system_prompt):
# self.system = self.system_format.format(system_prompt)
return system_prompt
def reset_system_prompt(self):
return self.set_system_prompt(self.default_system_prompt)
def history_as_formatted_str(self, system, history) -> str:
system = self.system_format.format(system)
text = system + "".join(
[
"\n".join(
[
self.user.format(item[0]),
self.assistant.format(item[1]),
]
)
for item in history[:-1]
]
)
text += self.user.format(history[-1][0])
text += self.response_prefix
# stopgap solution to too long sequences
if len(text) > 4500:
# delete from the middle between <|im_start|> and <|im_end|>
# find the middle ones, then expand out
start = text.find("<|im_start|>", 139)
end = text.find("<|im_end|>", 139)
while end < len(text) and len(text) > 4500:
end = text.find("<|im_end|>", end + 1)
text = text[:start] + text[end + 1 :]
if len(text) > 4500:
# the nice way didn't work, just truncate
# deleting the beginning
text = text[-4500:]
return text
def clear_history(self, history):
return []
def turn(self, user_input: str):
self.user_turn(user_input)
return self.bot_turn()
def user_turn(self, user_input: str, history):
history.append([user_input, ""])
return user_input, history
def bot_turn(self, system, history):
conversation = self.history_as_formatted_str(system, history)
assistant_response = call_inf_server(conversation)
history[-1][-1] = assistant_response
print(system)
print(history)
return "", history
def call_inf_server(prompt):
try:
response = predict(
URL,
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
timeout=70,
)
# print(f'prompt: {prompt}')
# print(f'len(prompt): {len(prompt)}')
response = response["outputs"][0]
# print(f'len(response): {len(response)}')
# remove spl tokens from prompt
spl_tokens = ["<|im_start|>", "<|im_end|>"]
clean_prompt = prompt.replace(spl_tokens[0], "").replace(spl_tokens[1], "")
# return response[len(clean_prompt) :] # remove the prompt
try:
user_prompt = prompt
generator = generate(llm, generation_config, system_prompt, user_prompt.strip())
print(assistant_prefix, end=" ", flush=True)
for word in generator:
print(word, end="", flush=True)
print("")
response = word
except Exception as exc:
logger.error(exc)
response = f"{exc=}"
return response
except Exception as e:
# assume it is our error
# just wait and try one more time
print(e)
time.sleep(1)
response = predict(
URL,
{"inputs": [prompt], "temperature": 0.2, "top_p": 0.9, "output_len": 512},
timeout=70,
)
# print(response)
response = response["outputs"][0]
return response[len(prompt) :] # remove the prompt
logger.info("start dl")
_ = """full url: https://huggingface.co/TheBloke/mpt-30B-chat-GGML/blob/main/mpt-30b-chat.ggmlv0.q4_1.bin"""
repo_id = "TheBloke/mpt-30B-chat-GGML"
# https://huggingface.co/TheBloke/mpt-30B-chat-GGML
_ = """
mpt-30b-chat.ggmlv0.q4_0.bin q4_0 4 16.85 GB 19.35 GB 4-bit.
mpt-30b-chat.ggmlv0.q4_1.bin q4_1 4 18.73 GB 21.23 GB 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.
mpt-30b-chat.ggmlv0.q5_0.bin q5_0 5 20.60 GB 23.10 GB
mpt-30b-chat.ggmlv0.q5_1.bin q5_1 5 22.47 GB 24.97 GB
mpt-30b-chat.ggmlv0.q8_0.bin q8_0 8 31.83 GB 34.33 GB
"""
model_filename = "mpt-30b-chat.ggmlv0.q4_1.bin"
model_filename = "mpt-30b-chat.ggmlv0.q5_1.bin"
destination_folder = "models"
download_mpt_quant(destination_folder, repo_id, model_filename)
logger.info("done dl")
config = AutoConfig.from_pretrained("mosaicml/mpt-30b-chat", context_length=8192)
llm = AutoModelForCausalLM.from_pretrained(
os.path.abspath(f"models/{model_filename}"),
model_type="mpt",
config=config,
)
system_prompt = "A conversation between a user and an LLM-based AI assistant named Local Assistant. Local Assistant gives helpful and honest answers."
generation_config = GenerationConfig(
temperature=0.2,
top_k=0,
top_p=0.9,
repetition_penalty=1.0,
max_new_tokens=512, # adjust as needed
seed=42,
reset=False, # reset history (cache)
stream=True, # streaming per word/token
threads=int(os.cpu_count() / 2), # adjust for your CPU
stop=["<|im_end|>", "|<"],
)
user_prefix = "[user]: "
assistant_prefix = "[assistant]: "
css = """
.importantButton {
background: linear-gradient(45deg, #7e0570,#5d1c99, #6e00ff) !important;
border: none !important;
}
.importantButton:hover {
background: linear-gradient(45deg, #ff00e0,#8500ff, #6e00ff) !important;
border: none !important;
}
.disclaimer {font-variant-caps: all-small-caps; font-size: xx-small;}
.xsmall {font-size: x-small;}
"""
with gr.Blocks(
title="mpt-30b-chat-ggml-5bit-1",
theme=gr.themes.Soft(text_size="sm"),
css=css,
) as block:
with gr.Accordion("🎈 Info", open=False):
gr.HTML(
"""<center><a href="https://huggingface.co/spaces/mikeee/mpt-30b-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate"></a> and spin a CPU UPGRADE to avoid the queue</center>"""
)
gr.Markdown(
"""<h4><center>mpt-30b-chat-ggml-5bit-1</center></h4>
This demo is of [TheBloke/mpt-30B-chat-GGML](https://huggingface.co/TheBloke/mpt-30B-chat-GGML).
It takes about >40 seconds to get a response. Restarting the space takes about 5 minutes if the space is asleep due to inactivity. If the space crashes for some reason, it will also take about 5 minutes to restart. You need to refresh the browser to reload the new space.
""",
elem_classes="xsmall"
)
conversation = Chat()
chatbot = gr.Chatbot().style(height=700) # 500
buff = gr.Textbox(show_label=False)
with gr.Row():
with gr.Column():
msg = gr.Textbox(
label="Chat Message Box",
placeholder="Ask me anything (press Enter or click Submit to send)",
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
submit = gr.Button("Submit", elem_classes="xsmall")
stop = gr.Button("Stop", visible=False)
clear = gr.Button("Clear", visible=False)
with gr.Row(visible=False):
with gr.Accordion("Advanced Options:", open=False):
with gr.Row():
with gr.Column(scale=2):
system = gr.Textbox(
label="System Prompt",
value=Chat.default_system_prompt,
show_label=False,
).style(container=False)
with gr.Column():
with gr.Row():
change = gr.Button("Change System Prompt")
reset = gr.Button("Reset System Prompt")
with gr.Accordion("Example inputs", open=True):
etext = """In America, where cars are an important part of the national psyche, a decade ago people had suddenly started to drive less, which had not happened since the oil shocks of the 1970s. """
examples = gr.Examples(
examples=[
["Explain the plot of Cinderella in a sentence."],
[
"How long does it take to become proficient in French, and what are the best methods for retaining information?"
],
["What are some common mistakes to avoid when writing code?"],
["Build a prompt to generate a beautiful portrait of a horse"],
["Suggest four metaphors to describe the benefits of AI"],
["Write a pop song about leaving home for the sandy beaches."],
["Write a summary demonstrating my ability to tame lions"],
["鲁迅和周树人什么关系"],
["从前有一头牛,这头牛后面有什么?"],
["正无穷大加一大于正无穷大吗?"],
["正无穷大加正无穷大大于正无穷大吗?"],
["-2的平方根等于什么"],
["树上有5只鸟,猎人开枪打死了一只。树上还有几只鸟?"],
["树上有11只鸟,猎人开枪打死了一只。树上还有几只鸟?提示:需考虑鸟可能受惊吓飞走。"],
["鲁迅和周树人什么关系 用英文回答"],
["以红楼梦的行文风格写一张委婉的请假条。不少于320字。"],
[f"{etext} 翻成中文,列出3个版本"],
[f"{etext} \n 翻成中文,保留原意,但使用文学性的语言。不要写解释。列出3个版本"],
["js 判断一个数是不是质数"],
["js 实现python 的 range(10)"],
["js 实现python 的 [*(range(10)]"],
["假定 1 + 2 = 4, 试求 7 + 8"],
["Erkläre die Handlung von Cinderella in einem Satz."],
["Erkläre die Handlung von Cinderella in einem Satz. Auf Deutsch"],
],
inputs=[msg],
examples_per_page=30,
)
# with gr.Row():
with gr.Accordion("Disclaimer", open=False):
gr.Markdown(
"Disclaimer: MPT-30B can produce factually incorrect output, and should not be relied on to produce "
"factually accurate information. MPT-30B was trained on various public datasets; while great efforts "
"have been taken to clean the pretraining data, it is possible that this model could generate lewd, "
"biased, or otherwise offensive outputs.",
elem_classes=["disclaimer"],
)
with gr.Row(visible=False):
gr.Markdown(
"[Privacy policy](https://gist.github.com/samhavens/c29c68cdcd420a9aa0202d0839876dac)",
elem_classes=["disclaimer"],
)
_ = """
submit_event = msg.submit(
fn=conversation.user_turn,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
fn=conversation.bot_turn,
inputs=[system, chatbot],
outputs=[msg, chatbot],
queue=True,
)
submit_click_event = submit.click(
fn=conversation.user_turn,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=False,
).then(
# fn=conversation.bot_turn,
inputs=[system, chatbot],
outputs=[msg, chatbot],
queue=True,
)
stop.click(
fn=None,
inputs=None,
outputs=None,
cancels=[submit_event, submit_click_event],
queue=False,
)
clear.click(lambda: None, None, chatbot, queue=False).then(
fn=conversation.clear_history,
inputs=[chatbot],
outputs=[chatbot],
queue=False,
)
change.click(
fn=conversation.set_system_prompt,
inputs=[system],
outputs=[system],
queue=False,
)
reset.click(
fn=conversation.reset_system_prompt,
inputs=[],
outputs=[system],
queue=False,
)
# """
msg.submit(
# fn=conversation.user_turn,
fn=predict0,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
api_name="predict"
)
submit.click(
# fn=conversation.user_turn,
fn=predict0,
inputs=[msg, chatbot],
outputs=[msg, chatbot],
queue=True,
show_progress="full",
)
# update buff Textbox, every: units in seconds)
# https://huggingface.co/spaces/julien-c/nvidia-smi/discussions
# does not work
# AttributeError: 'Blocks' object has no attribute 'run_forever'
# block.run_forever(lambda: ns.response, None, [buff], every=1)
with gr.Accordion("For Chat/Translation API", open=False, visible=False):
input_text = gr.Text()
api_btn = gr.Button("Go", variant="primary")
out_text = gr.Text()
api_btn.click(
predict_api,
input_text,
out_text,
# show_progress="full",
api_name="api",
)
# concurrency_count=5, max_size=20
# max_size=36, concurrency_count=14
block.queue(concurrency_count=5, max_size=20).launch(debug=True)