Spaces:
Sleeping
Sleeping
# GPT Chatbot | |
# Create Conda virtual environment | |
# conda create --name gpt_chatbot python=3.9.4 | |
# conda activate gpt_chatbot | |
# Installation | |
# pip install streamlit pypdf2 langchain python-dotenv faiss-cpu openai huggingface_hub | |
# pip install tiktoken | |
# pip install InstructorEmbedding sentence_transformers | |
# Could not import tiktoken python package. This is needed in order to for OpenAIEmbeddings. Please install it with `pip install tiktoken`. | |
# run the app using the following command in anaconda VS Code terminal | |
# streamlit run app.py | |
import os | |
import time | |
from loguru import logger | |
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS # FAISS instead of PineCone | |
from langchain.llms import OpenAI | |
from langchain.llms import HuggingFaceHub | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
os.environ["TZ"] = "Asia/Shanghai" | |
try: | |
time.tzset() | |
except Exception: | |
... # Windows | |
logger.warning("Windows, cant set time.tzset()") | |
def get_pdf_text(pdf_docs): | |
text ="" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
# embeddings = OpenAIEmbeddings() | |
model_name = "hkunlp/instructor-xl" | |
model_name = "hkunlp/instructor-large" | |
model_name = "hkunlp/instructor-base" | |
logger.info(f"Loading {model_name}") | |
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name) | |
logger.info(f"Done loading {model_name}") | |
logger.info(f"Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
logger.info(f"Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embeddings)") | |
return vectorstore | |
def get_conversation_chain(vectorstore): | |
llm = OpenAI() | |
#llm = ChatOpenAI() | |
#llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512}) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
# st.session_state.conversation contains all the configuration from our vectorstore and memory. | |
response = st.session_state.conversation({'question': user_question}) | |
# st.write(response) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace("{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple law journal PDFs", | |
page_icon=":books:") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs :books:") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
#st.write(user_template.replace("{{MSG}}", "hello robot"), unsafe_allow_html=True) | |
#st.write(bot_template.replace("{{MSG}}", "hello human"), unsafe_allow_html=True) | |
# "https://i.ibb.co/rdZC7LZ/Photo-logo-1.png" | |
# "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/bot.jpg" | |
# "https://huggingface.co/spaces/gli-mrunal/GPT_instruct_chatbot/blob/main/images/CSUN_Matadors_logo.svg.png" | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDfs here and click 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
# --------------- get pdf text ------------------- | |
raw_text = get_pdf_text(pdf_docs) | |
#st.write(raw_text) | |
# ---------- get the text chunks ------------------------- | |
text_chunks = get_text_chunks(raw_text) | |
#st.write(text_chunks) | |
# -------------- create vector store------------------------ | |
# https://openai.com/pricing --> Embedding Models | |
# Chose to use the best embedding model - intructor_xl ranked higher than OpenAi's embeddings from huggingface leaderboard | |
# https://huggingface.co/spaces/mteb/leaderboard | |
logger.info("Start get_vectorstore") | |
vectorstore = get_vectorstore(text_chunks) | |
logger.info("Done get_vectorstore") | |
logger.info("Start create conversation chain") | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
#conversation = get_conversation_chain(vectorstore) | |
logger.info("Done create conversation chain") | |
#st.session_state.conversation | |
if __name__ == '__main__': | |
main() |