Spaces:
Sleeping
Sleeping
import asyncio | |
import os | |
import time | |
from concurrent.futures import ThreadPoolExecutor | |
from typing import List, Tuple, Union | |
from uuid import uuid4 | |
from fastapi import FastAPI, HTTPException, Request | |
from fastapi.responses import JSONResponse | |
from FlagEmbedding import BGEM3FlagModel | |
from pydantic import BaseModel | |
from starlette.status import HTTP_504_GATEWAY_TIMEOUT | |
os.environ["HF_HOME"] = "/tmp/cache" | |
batch_size = 2 # gpu batch_size in order of your available vram | |
max_request = 10 # max request for future improvements on api calls / gpu batches (for now is pretty basic) | |
max_length = 5000 # max context length for embeddings and passages in re-ranker | |
max_q_length = 256 # max context lenght for questions in re-ranker | |
request_flush_timeout = .1 # flush time out for future improvements on api calls / gpu batches (for now is pretty basic) | |
rerank_weights = [0.4, 0.2, 0.4] # re-rank score weights | |
request_time_out = 30 # Timeout threshold | |
gpu_time_out = 5 # gpu processing timeout threshold | |
port= 3000 | |
port= 7860 | |
class m3Wrapper: | |
def __init__(self, model_name: str, device: str = 'cuda'): | |
"""Init.""" | |
self.model = BGEM3FlagModel(model_name, device=device, use_fp16=True if device != 'cpu' else False) | |
def embed(self, sentences: List[str]) -> List[List[float]]: | |
embeddings = self.model.encode(sentences, batch_size=batch_size, max_length=max_length)['dense_vecs'] | |
embeddings = embeddings.tolist() | |
return embeddings | |
def rerank(self, sentence_pairs: List[Tuple[str, str]]) -> List[float]: | |
scores = self.model.compute_score( | |
sentence_pairs, | |
batch_size=batch_size, | |
max_query_length=max_q_length, | |
max_passage_length=max_length, | |
weights_for_different_modes=rerank_weights | |
)['colbert+sparse+dense'] | |
return scores | |
class EmbedRequest(BaseModel): | |
sentences: List[str] | |
class RerankRequest(BaseModel): | |
sentence_pairs: List[Tuple[str, str]] | |
class EmbedResponse(BaseModel): | |
embeddings: List[List[float]] | |
class RerankResponse(BaseModel): | |
scores: List[float] | |
class RequestProcessor: | |
def __init__(self, model: m3Wrapper, max_request_to_flush: int, accumulation_timeout: float): | |
"""Init.""" | |
self.model = model | |
self.max_batch_size = max_request_to_flush | |
self.accumulation_timeout = accumulation_timeout | |
self.queue = asyncio.Queue() | |
self.response_futures = {} | |
self.processing_loop_task = None | |
self.processing_loop_started = False # Processing pool flag lazy init state | |
self.executor = ThreadPoolExecutor() # Thread pool | |
self.gpu_lock = asyncio.Semaphore(1) # Sem for gpu sync usage | |
async def ensure_processing_loop_started(self): | |
if not self.processing_loop_started: | |
print('starting processing_loop') | |
self.processing_loop_task = asyncio.create_task(self.processing_loop()) | |
self.processing_loop_started = True | |
async def processing_loop(self): | |
while True: | |
requests, request_types, request_ids = [], [], [] | |
start_time = asyncio.get_event_loop().time() | |
while len(requests) < self.max_batch_size: | |
timeout = self.accumulation_timeout - (asyncio.get_event_loop().time() - start_time) | |
if timeout <= 0: | |
break | |
try: | |
req_data, req_type, req_id = await asyncio.wait_for(self.queue.get(), timeout=timeout) | |
requests.append(req_data) | |
request_types.append(req_type) | |
request_ids.append(req_id) | |
except asyncio.TimeoutError: | |
break | |
if requests: | |
await self.process_requests_by_type(requests, request_types, request_ids) | |
async def process_requests_by_type(self, requests, request_types, request_ids): | |
tasks = [] | |
for request_data, request_type, request_id in zip(requests, request_types, request_ids): | |
if request_type == 'embed': | |
task = asyncio.create_task(self.run_with_semaphore(self.model.embed, request_data.sentences, request_id)) | |
else: # 'rerank' | |
task = asyncio.create_task(self.run_with_semaphore(self.model.rerank, request_data.sentence_pairs, request_id)) | |
tasks.append(task) | |
await asyncio.gather(*tasks) | |
async def run_with_semaphore(self, func, data, request_id): | |
async with self.gpu_lock: # Wait for sem | |
future = self.executor.submit(func, data) | |
try: | |
result = await asyncio.wait_for(asyncio.wrap_future(future), timeout= gpu_time_out) | |
self.response_futures[request_id].set_result(result) | |
except asyncio.TimeoutError: | |
self.response_futures[request_id].set_exception(TimeoutError("GPU processing timeout")) | |
except Exception as e: | |
self.response_futures[request_id].set_exception(e) | |
async def process_request(self, request_data: Union[EmbedRequest, RerankRequest], request_type: str): | |
try: | |
await self.ensure_processing_loop_started() | |
request_id = str(uuid4()) | |
self.response_futures[request_id] = asyncio.Future() | |
await self.queue.put((request_data, request_type, request_id)) | |
return await self.response_futures[request_id] | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Internal Server Error {e}") | |
app = FastAPI( | |
title="baai m3, serving embed and rerank", | |
description="Swagger UI at https://mikeee-baai-m3.hf.space/docs", | |
version="0.1.0a0", | |
) | |
# Initialize the model and request processor | |
model = m3Wrapper('BAAI/bge-m3') | |
processor = RequestProcessor(model, accumulation_timeout= request_flush_timeout, max_request_to_flush= max_request) | |
# Adding a middleware returning a 504 error if the request processing time is above a certain threshold | |
async def timeout_middleware(request: Request, call_next): | |
try: | |
start_time = time.time() | |
return await asyncio.wait_for(call_next(request), timeout=request_time_out) | |
except asyncio.TimeoutError: | |
process_time = time.time() - start_time | |
return JSONResponse({'detail': 'Request processing time excedeed limit', | |
'processing_time': process_time}, | |
status_code=HTTP_504_GATEWAY_TIMEOUT) | |
async def landing(): | |
"""Define landing page.""" | |
return "Swagger UI at https://mikeee-baai-m3.hf.space/docs" | |
async def get_embeddings(request: EmbedRequest): | |
embeddings = await processor.process_request(request, 'embed') | |
return EmbedResponse(embeddings=embeddings) | |
async def rerank(request: RerankRequest): | |
scores = await processor.process_request(request, 'rerank') | |
return RerankResponse(scores=scores) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port= port) | |