efederici's picture
Update app.py
8d5bd81 verified
raw
history blame
3.81 kB
import gradio as gr
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
)
import os
from threading import Thread
import spaces
import time
import subprocess
PLACEHOLDER = """
<div style="padding: 40px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://i.imgur.com/dgSNbTl.jpg" style="width: 90%; max-width: 650px; height: auto; opacity: 0.8; ">
<h1 style="font-size: 28px; margin-top: 20px; margin-bottom: 2px; opacity: 0.55;">mii-llm / Maestrale</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Chiedi pure...</p>
</div>
"""
DESCRIPTION = """<div>
<p>๐Ÿ‡ฎ๐Ÿ‡น Italian LLM <a href="https://huggingface.co/mii-llm/maestrale-chat-v0.3-beta"><b>Maestrale Chat v0.4 beta</b></a>. Maestrale is a powerful language model for Italian, trained by mii-llm, based on Mistral 7B.</p>
<p>๐Ÿ”Ž For more details about Maestrale and how to use it with <code>transformers</code>, visit the <a href="https://huggingface.co/mii-llm/maestrale-chat-v0.3-beta">model card</a>.</p>
</div>"""
_token = os.environ["HUGGINGFACE_API_KEY"]
tokenizer = AutoTokenizer.from_pretrained("mii-llm/maestrale-chat-v0.4-alpha", token=_token)
model = AutoModelForCausalLM.from_pretrained("mii-llm/maestrale-chat-v0.4-alpha", torch_dtype=torch.bfloat16, device_map="auto", token=_token)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>")
]
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
else:
device = torch.device("cpu")
print("Using CPU")
model = model.to(device)
@spaces.GPU(duration=60)
def chat(message, history, system, temperature, do_sample, max_tokens):
chat = [{"role": "system", "content": system}] if system else []
chat.extend(
{"role": role, "content": content}
for user, assistant in history
for role, content in [("user", user), ("assistant", assistant)]
)
chat.append({"role": "user", "content": message})
messages = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(
tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generate_kwargs = {
**model_inputs,
"streamer": streamer,
"max_new_tokens": max_tokens,
"do_sample": do_sample,
"temperature": temperature,
"eos_token_id": terminators,
}
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
partial_text = ""
for new_text in streamer:
partial_text += new_text
yield partial_text
yield partial_text
chatbot = gr.Chatbot(height=700, placeholder=PLACEHOLDER, label='Conversazione', show_copy_button=True)
demo = gr.ChatInterface(
fn=chat,
chatbot=chatbot,
fill_height=True,
theme=gr.themes.Soft(),
additional_inputs_accordion=gr.Accordion(
label="โš™๏ธ Parametri", open=False, render=False
),
additional_inputs=[
gr.Textbox(
label="System",
value="sei un assistente utile.",
),
gr.Slider(
minimum=0, maximum=1, step=0.1, value=0.7, label="Temperature", render=False
),
gr.Checkbox(label="Sampling", value=True),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False,
),
],
stop_btn="Stop Generation",
cache_examples=False,
title="Maestrale Chat v0.3 beta",
description=DESCRIPTION
)
demo.launch()