Spaces:
Paused
Paused
Create shape_predictor.py
Browse files- utils/shape_predictor.py +193 -0
utils/shape_predictor.py
ADDED
|
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import PIL
|
| 5 |
+
import dlib
|
| 6 |
+
import numpy as np
|
| 7 |
+
import scipy
|
| 8 |
+
import scipy.ndimage
|
| 9 |
+
import torch
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from torchvision import transforms as T
|
| 12 |
+
|
| 13 |
+
from utils.drive import open_url
|
| 14 |
+
|
| 15 |
+
"""
|
| 16 |
+
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
| 17 |
+
author: lzhbrian (https://lzhbrian.me)
|
| 18 |
+
date: 2020.1.5
|
| 19 |
+
note: code is heavily borrowed from
|
| 20 |
+
https://github.com/NVlabs/ffhq-dataset
|
| 21 |
+
http://dlib.net/face_landmark_detection.py.html
|
| 22 |
+
requirements:
|
| 23 |
+
apt install cmake
|
| 24 |
+
conda install Pillow numpy scipy
|
| 25 |
+
pip install dlib
|
| 26 |
+
# download face landmark model from:
|
| 27 |
+
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_landmark(filepath, predictor):
|
| 32 |
+
"""get landmark with dlib
|
| 33 |
+
:return: np.array shape=(68, 2)
|
| 34 |
+
"""
|
| 35 |
+
detector = dlib.get_frontal_face_detector()
|
| 36 |
+
|
| 37 |
+
img = dlib.load_rgb_image(filepath)
|
| 38 |
+
dets = detector(img, 1)
|
| 39 |
+
filepath = Path(filepath)
|
| 40 |
+
print(f"{filepath.name}: Number of faces detected: {len(dets)}")
|
| 41 |
+
shapes = [predictor(img, d) for k, d in enumerate(dets)]
|
| 42 |
+
|
| 43 |
+
lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes]
|
| 44 |
+
|
| 45 |
+
return lms
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_landmark_from_tensors(tensors: list[torch.Tensor | Image.Image | np.ndarray], predictor):
|
| 49 |
+
detector = dlib.get_frontal_face_detector()
|
| 50 |
+
transform = T.ToPILImage()
|
| 51 |
+
images = []
|
| 52 |
+
lms = []
|
| 53 |
+
|
| 54 |
+
for k, tensor in enumerate(tensors):
|
| 55 |
+
if isinstance(tensor, torch.Tensor):
|
| 56 |
+
img_pil = transform(tensor)
|
| 57 |
+
else:
|
| 58 |
+
img_pil = tensor
|
| 59 |
+
img = np.array(img_pil)
|
| 60 |
+
images.append(img_pil)
|
| 61 |
+
|
| 62 |
+
dets = detector(img, 1)
|
| 63 |
+
if len(dets) == 0:
|
| 64 |
+
raise ValueError(f"No faces detected in the image {k}.")
|
| 65 |
+
elif len(dets) == 1:
|
| 66 |
+
print(f"Number of faces detected: {len(dets)}")
|
| 67 |
+
else:
|
| 68 |
+
print(f"Number of faces detected: {len(dets)}, get largest face")
|
| 69 |
+
|
| 70 |
+
# Find the largest face
|
| 71 |
+
dets = sorted(dets, key=lambda det: det.width() * det.height(), reverse=True)
|
| 72 |
+
shape = predictor(img, dets[0])
|
| 73 |
+
lm = np.array([[tt.x, tt.y] for tt in shape.parts()])
|
| 74 |
+
lms.append(lm)
|
| 75 |
+
|
| 76 |
+
return images, lms
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def align_face(data, predictor=None, is_filepath=False, return_tensors=True):
|
| 80 |
+
"""
|
| 81 |
+
:param data: filepath or list torch Tensors
|
| 82 |
+
:return: list of PIL Images
|
| 83 |
+
"""
|
| 84 |
+
if predictor is None:
|
| 85 |
+
predictor_path = 'shape_predictor_68_face_landmarks.dat'
|
| 86 |
+
|
| 87 |
+
if not os.path.isfile(predictor_path):
|
| 88 |
+
print("Downloading Shape Predictor")
|
| 89 |
+
data_io = open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx")
|
| 90 |
+
with open(predictor_path, 'wb') as f:
|
| 91 |
+
f.write(data_io.getbuffer())
|
| 92 |
+
|
| 93 |
+
predictor = dlib.shape_predictor(predictor_path)
|
| 94 |
+
|
| 95 |
+
if is_filepath:
|
| 96 |
+
lms = get_landmark(data, predictor)
|
| 97 |
+
else:
|
| 98 |
+
if not isinstance(data, list):
|
| 99 |
+
data = [data]
|
| 100 |
+
images, lms = get_landmark_from_tensors(data, predictor)
|
| 101 |
+
|
| 102 |
+
imgs = []
|
| 103 |
+
for num_img, lm in enumerate(lms):
|
| 104 |
+
lm_chin = lm[0: 17] # left-right
|
| 105 |
+
lm_eyebrow_left = lm[17: 22] # left-right
|
| 106 |
+
lm_eyebrow_right = lm[22: 27] # left-right
|
| 107 |
+
lm_nose = lm[27: 31] # top-down
|
| 108 |
+
lm_nostrils = lm[31: 36] # top-down
|
| 109 |
+
lm_eye_left = lm[36: 42] # left-clockwise
|
| 110 |
+
lm_eye_right = lm[42: 48] # left-clockwise
|
| 111 |
+
lm_mouth_outer = lm[48: 60] # left-clockwise
|
| 112 |
+
lm_mouth_inner = lm[60: 68] # left-clockwise
|
| 113 |
+
|
| 114 |
+
# Calculate auxiliary vectors.
|
| 115 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
| 116 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
| 117 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
| 118 |
+
eye_to_eye = eye_right - eye_left
|
| 119 |
+
mouth_left = lm_mouth_outer[0]
|
| 120 |
+
mouth_right = lm_mouth_outer[6]
|
| 121 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
| 122 |
+
eye_to_mouth = mouth_avg - eye_avg
|
| 123 |
+
|
| 124 |
+
# Choose oriented crop rectangle.
|
| 125 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
| 126 |
+
x /= np.hypot(*x)
|
| 127 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
| 128 |
+
y = np.flipud(x) * [-1, 1]
|
| 129 |
+
c = eye_avg + eye_to_mouth * 0.1
|
| 130 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
| 131 |
+
qsize = np.hypot(*x) * 2
|
| 132 |
+
|
| 133 |
+
# read image
|
| 134 |
+
if is_filepath:
|
| 135 |
+
img = PIL.Image.open(data)
|
| 136 |
+
else:
|
| 137 |
+
img = images[num_img]
|
| 138 |
+
|
| 139 |
+
output_size = 1024
|
| 140 |
+
# output_size = 256
|
| 141 |
+
transform_size = 4096
|
| 142 |
+
enable_padding = True
|
| 143 |
+
|
| 144 |
+
# Shrink.
|
| 145 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
| 146 |
+
if shrink > 1:
|
| 147 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
| 148 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
| 149 |
+
quad /= shrink
|
| 150 |
+
qsize /= shrink
|
| 151 |
+
|
| 152 |
+
# Crop.
|
| 153 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
| 154 |
+
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
| 155 |
+
int(np.ceil(max(quad[:, 1]))))
|
| 156 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
| 157 |
+
min(crop[3] + border, img.size[1]))
|
| 158 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
| 159 |
+
img = img.crop(crop)
|
| 160 |
+
quad -= crop[0:2]
|
| 161 |
+
|
| 162 |
+
# Pad.
|
| 163 |
+
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
| 164 |
+
int(np.ceil(max(quad[:, 1]))))
|
| 165 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
| 166 |
+
max(pad[3] - img.size[1] + border, 0))
|
| 167 |
+
if enable_padding and max(pad) > border - 4:
|
| 168 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
| 169 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
| 170 |
+
h, w, _ = img.shape
|
| 171 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
| 172 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
| 173 |
+
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
| 174 |
+
blur = qsize * 0.02
|
| 175 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
| 176 |
+
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
| 177 |
+
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
| 178 |
+
quad += pad[:2]
|
| 179 |
+
|
| 180 |
+
# Transform.
|
| 181 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(),
|
| 182 |
+
PIL.Image.BILINEAR)
|
| 183 |
+
if output_size < transform_size:
|
| 184 |
+
img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
|
| 185 |
+
|
| 186 |
+
# Save aligned image.
|
| 187 |
+
imgs.append(img)
|
| 188 |
+
|
| 189 |
+
if return_tensors:
|
| 190 |
+
transform = T.ToTensor()
|
| 191 |
+
tensors = [transform(img).clamp(0, 1) for img in imgs]
|
| 192 |
+
return tensors
|
| 193 |
+
return imgs
|