Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,151 +1,394 @@
|
|
| 1 |
import hashlib
|
| 2 |
import os
|
| 3 |
from io import BytesIO
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
-
import grpc
|
| 7 |
from PIL import Image
|
| 8 |
from cachetools import LRUCache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
from inference_pb2 import HairSwapRequest, HairSwapResponse
|
| 11 |
-
from inference_pb2_grpc import HairSwapServiceStub
|
| 12 |
from utils.shape_predictor import align_face
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def get_bytes(img):
|
|
|
|
| 16 |
if img is None:
|
| 17 |
return img
|
| 18 |
-
|
| 19 |
buffered = BytesIO()
|
| 20 |
img.save(buffered, format="JPEG")
|
| 21 |
return buffered.getvalue()
|
| 22 |
|
| 23 |
|
| 24 |
def bytes_to_image(image: bytes) -> Image.Image:
|
|
|
|
| 25 |
image = Image.open(BytesIO(image))
|
| 26 |
return image
|
| 27 |
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
def center_crop(img):
|
|
|
|
| 30 |
width, height = img.size
|
| 31 |
side = min(width, height)
|
| 32 |
-
|
| 33 |
left = (width - side) / 2
|
| 34 |
top = (height - side) / 2
|
| 35 |
right = (width + side) / 2
|
| 36 |
bottom = (height + side) / 2
|
| 37 |
-
|
| 38 |
img = img.crop((left, top, right, bottom))
|
| 39 |
return img
|
| 40 |
|
| 41 |
|
| 42 |
def resize(name):
|
|
|
|
| 43 |
def resize_inner(img, align):
|
| 44 |
global align_cache
|
| 45 |
-
|
| 46 |
if name in align:
|
| 47 |
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
|
| 48 |
-
|
| 49 |
if img_hash not in align_cache:
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
else:
|
| 53 |
img = align_cache[img_hash]
|
| 54 |
-
|
| 55 |
elif img.size != (1024, 1024):
|
| 56 |
img = center_crop(img)
|
| 57 |
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 58 |
-
|
| 59 |
return img
|
| 60 |
-
|
| 61 |
return resize_inner
|
| 62 |
|
| 63 |
|
| 64 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
if not face and not shape and not color:
|
| 66 |
-
return gr.update(visible=False), gr.update(
|
|
|
|
|
|
|
|
|
|
| 67 |
elif not face:
|
| 68 |
-
return gr.update(visible=False), gr.update(
|
|
|
|
|
|
|
|
|
|
| 69 |
elif not shape and not color:
|
| 70 |
-
return gr.update(visible=False), gr.update(
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
if shape_bytes is None:
|
| 75 |
-
shape_bytes = b'face'
|
| 76 |
-
if color_bytes is None:
|
| 77 |
-
color_bytes = b'shape'
|
| 78 |
-
|
| 79 |
-
with grpc.insecure_channel(os.environ['SERVER']) as channel:
|
| 80 |
-
stub = HairSwapServiceStub(channel)
|
| 81 |
-
|
| 82 |
-
output: HairSwapResponse = stub.swap(
|
| 83 |
-
HairSwapRequest(face=face_bytes, shape=shape_bytes, color=color_bytes, blending=blending,
|
| 84 |
-
poisson_iters=poisson_iters, poisson_erosion=poisson_erosion, use_cache=True)
|
| 85 |
)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
|
| 91 |
def get_demo():
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
| 103 |
with gr.Row():
|
| 104 |
with gr.Column():
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
with gr.Row():
|
| 107 |
-
shape = gr.Image(
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
with gr.Column():
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
|
|
|
| 128 |
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
|
| 129 |
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
|
| 130 |
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
|
| 131 |
|
| 132 |
-
btn.click(
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
@article{nikolaev2024hairfastgan,
|
| 138 |
title={HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach},
|
| 139 |
author={Nikolaev, Maxim and Kuznetsov, Mikhail and Vetrov, Dmitry and Alanov, Aibek},
|
| 140 |
journal={arXiv preprint arXiv:2404.01094},
|
| 141 |
year={2024}
|
| 142 |
}
|
| 143 |
-
|
| 144 |
''')
|
|
|
|
| 145 |
return demo
|
| 146 |
|
| 147 |
|
| 148 |
if __name__ == '__main__':
|
|
|
|
| 149 |
align_cache = LRUCache(maxsize=10)
|
|
|
|
|
|
|
| 150 |
demo = get_demo()
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import hashlib
|
| 2 |
import os
|
| 3 |
from io import BytesIO
|
| 4 |
+
import base64
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
from cachetools import LRUCache
|
| 9 |
+
import torch
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
# Direct HairFast imports (no gRPC needed!)
|
| 13 |
+
try:
|
| 14 |
+
from hair_swap import HairFast, get_parser
|
| 15 |
+
HAIRFAST_AVAILABLE = True
|
| 16 |
+
print("✅ HairFast successfully imported!")
|
| 17 |
+
except ImportError as e:
|
| 18 |
+
print(f"❌ HairFast import failed: {e}")
|
| 19 |
+
HAIRFAST_AVAILABLE = False
|
| 20 |
|
|
|
|
|
|
|
| 21 |
from utils.shape_predictor import align_face
|
| 22 |
|
| 23 |
+
# Global variables
|
| 24 |
+
hair_fast_model = None
|
| 25 |
+
align_cache = LRUCache(maxsize=10)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def initialize_hairfast():
|
| 29 |
+
"""Initialize HairFast model"""
|
| 30 |
+
global hair_fast_model
|
| 31 |
+
|
| 32 |
+
if not HAIRFAST_AVAILABLE:
|
| 33 |
+
print("❌ HairFast not available")
|
| 34 |
+
return False
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
print("🔄 Initializing HairFast model...")
|
| 38 |
+
|
| 39 |
+
# Get default arguments
|
| 40 |
+
parser = get_parser()
|
| 41 |
+
args = parser.parse_args([]) # Use default arguments
|
| 42 |
+
|
| 43 |
+
# Override some settings for HF Spaces
|
| 44 |
+
args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 45 |
+
args.batch_size = 1 # Keep small for HF Spaces
|
| 46 |
+
|
| 47 |
+
# Initialize HairFast
|
| 48 |
+
hair_fast_model = HairFast(args)
|
| 49 |
+
|
| 50 |
+
print(f"✅ HairFast initialized successfully on {args.device}!")
|
| 51 |
+
return True
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"❌ HairFast initialization failed: {e}")
|
| 55 |
+
hair_fast_model = None
|
| 56 |
+
return False
|
| 57 |
+
|
| 58 |
|
| 59 |
def get_bytes(img):
|
| 60 |
+
"""Convert PIL Image to bytes"""
|
| 61 |
if img is None:
|
| 62 |
return img
|
|
|
|
| 63 |
buffered = BytesIO()
|
| 64 |
img.save(buffered, format="JPEG")
|
| 65 |
return buffered.getvalue()
|
| 66 |
|
| 67 |
|
| 68 |
def bytes_to_image(image: bytes) -> Image.Image:
|
| 69 |
+
"""Convert bytes to PIL Image"""
|
| 70 |
image = Image.open(BytesIO(image))
|
| 71 |
return image
|
| 72 |
|
| 73 |
|
| 74 |
+
def base64_to_image(base64_string):
|
| 75 |
+
"""Convert base64 string to PIL Image"""
|
| 76 |
+
try:
|
| 77 |
+
if base64_string.startswith('data:image'):
|
| 78 |
+
base64_string = base64_string.split(',')[1]
|
| 79 |
+
image_bytes = base64.b64decode(base64_string)
|
| 80 |
+
return Image.open(BytesIO(image_bytes))
|
| 81 |
+
except Exception as e:
|
| 82 |
+
print(f"Error converting base64 to image: {e}")
|
| 83 |
+
return None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def image_to_base64(image):
|
| 87 |
+
"""Convert PIL Image to base64 string"""
|
| 88 |
+
if image is None:
|
| 89 |
+
return None
|
| 90 |
+
buffered = BytesIO()
|
| 91 |
+
image.save(buffered, format="JPEG")
|
| 92 |
+
img_bytes = buffered.getvalue()
|
| 93 |
+
img_base64 = base64.b64encode(img_bytes).decode('utf-8')
|
| 94 |
+
return f"data:image/jpeg;base64,{img_base64}"
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def pil_to_tensor(image):
|
| 98 |
+
"""Convert PIL to tensor for HairFast"""
|
| 99 |
+
if isinstance(image, Image.Image):
|
| 100 |
+
# Convert to tensor format expected by HairFast
|
| 101 |
+
image_array = np.array(image)
|
| 102 |
+
if image_array.max() > 1:
|
| 103 |
+
image_array = image_array / 255.0
|
| 104 |
+
tensor = torch.from_numpy(image_array).permute(2, 0, 1).float()
|
| 105 |
+
return tensor
|
| 106 |
+
return image
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def tensor_to_pil(tensor):
|
| 110 |
+
"""Convert tensor to PIL Image"""
|
| 111 |
+
if isinstance(tensor, torch.Tensor):
|
| 112 |
+
if tensor.dim() == 4:
|
| 113 |
+
tensor = tensor.squeeze(0)
|
| 114 |
+
if tensor.dim() == 3:
|
| 115 |
+
tensor = tensor.permute(1, 2, 0)
|
| 116 |
+
tensor = tensor.detach().cpu().numpy()
|
| 117 |
+
if tensor.max() <= 1:
|
| 118 |
+
tensor = (tensor * 255).astype(np.uint8)
|
| 119 |
+
return Image.fromarray(tensor)
|
| 120 |
+
return tensor
|
| 121 |
+
|
| 122 |
+
|
| 123 |
def center_crop(img):
|
| 124 |
+
"""Center crop image to square"""
|
| 125 |
width, height = img.size
|
| 126 |
side = min(width, height)
|
|
|
|
| 127 |
left = (width - side) / 2
|
| 128 |
top = (height - side) / 2
|
| 129 |
right = (width + side) / 2
|
| 130 |
bottom = (height + side) / 2
|
|
|
|
| 131 |
img = img.crop((left, top, right, bottom))
|
| 132 |
return img
|
| 133 |
|
| 134 |
|
| 135 |
def resize(name):
|
| 136 |
+
"""Image resize function with face alignment"""
|
| 137 |
def resize_inner(img, align):
|
| 138 |
global align_cache
|
| 139 |
+
|
| 140 |
if name in align:
|
| 141 |
img_hash = hashlib.md5(get_bytes(img)).hexdigest()
|
|
|
|
| 142 |
if img_hash not in align_cache:
|
| 143 |
+
try:
|
| 144 |
+
img = align_face(img, return_tensors=False)[0]
|
| 145 |
+
align_cache[img_hash] = img
|
| 146 |
+
except Exception as e:
|
| 147 |
+
print(f"Face alignment failed: {e}")
|
| 148 |
+
img = center_crop(img)
|
| 149 |
+
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 150 |
else:
|
| 151 |
img = align_cache[img_hash]
|
|
|
|
| 152 |
elif img.size != (1024, 1024):
|
| 153 |
img = center_crop(img)
|
| 154 |
img = img.resize((1024, 1024), Image.Resampling.LANCZOS)
|
| 155 |
+
|
| 156 |
return img
|
|
|
|
| 157 |
return resize_inner
|
| 158 |
|
| 159 |
|
| 160 |
+
def swap_hair_direct(face, shape, color, blending, poisson_iters, poisson_erosion):
|
| 161 |
+
"""Direct hair swapping using HairFast (no gRPC)"""
|
| 162 |
+
global hair_fast_model
|
| 163 |
+
|
| 164 |
+
# Initialize model if needed
|
| 165 |
+
if hair_fast_model is None:
|
| 166 |
+
if not initialize_hairfast():
|
| 167 |
+
return gr.update(visible=False), gr.update(
|
| 168 |
+
value="❌ HairFast model not available. Please check if all model files are uploaded.",
|
| 169 |
+
visible=True
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Validation
|
| 173 |
if not face and not shape and not color:
|
| 174 |
+
return gr.update(visible=False), gr.update(
|
| 175 |
+
value="Need to upload a face and at least a shape or color ❗",
|
| 176 |
+
visible=True
|
| 177 |
+
)
|
| 178 |
elif not face:
|
| 179 |
+
return gr.update(visible=False), gr.update(
|
| 180 |
+
value="Need to upload a face ❗",
|
| 181 |
+
visible=True
|
| 182 |
+
)
|
| 183 |
elif not shape and not color:
|
| 184 |
+
return gr.update(visible=False), gr.update(
|
| 185 |
+
value="Need to upload at least a shape or color ❗",
|
| 186 |
+
visible=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
+
try:
|
| 190 |
+
print("🔄 Starting hair transfer...")
|
| 191 |
+
|
| 192 |
+
# Use shape as color if color is not provided
|
| 193 |
+
if color is None:
|
| 194 |
+
color = shape
|
| 195 |
+
if shape is None:
|
| 196 |
+
shape = color
|
| 197 |
+
|
| 198 |
+
# Direct HairFast inference
|
| 199 |
+
result_tensor = hair_fast_model.swap(
|
| 200 |
+
face_img=face,
|
| 201 |
+
shape_img=shape,
|
| 202 |
+
color_img=color,
|
| 203 |
+
benchmark=False,
|
| 204 |
+
align=True, # Use face alignment
|
| 205 |
+
seed=3407
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
# Convert result tensor to PIL Image
|
| 209 |
+
result_image = tensor_to_pil(result_tensor)
|
| 210 |
+
|
| 211 |
+
print("✅ Hair transfer completed successfully!")
|
| 212 |
+
return gr.update(value=result_image, visible=True), gr.update(visible=False)
|
| 213 |
+
|
| 214 |
+
except Exception as e:
|
| 215 |
+
error_msg = f"❌ Hair transfer failed: {str(e)}"
|
| 216 |
+
print(error_msg)
|
| 217 |
+
return gr.update(visible=False), gr.update(value=error_msg, visible=True)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def hair_transfer_api(source_image, shape_image=None, color_image=None,
|
| 221 |
+
blending="Article", poisson_iters=0, poisson_erosion=15):
|
| 222 |
+
"""API function for React integration"""
|
| 223 |
+
global hair_fast_model
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
# Handle base64 inputs
|
| 227 |
+
if isinstance(source_image, str):
|
| 228 |
+
source_image = base64_to_image(source_image)
|
| 229 |
+
if isinstance(shape_image, str):
|
| 230 |
+
shape_image = base64_to_image(shape_image)
|
| 231 |
+
if isinstance(color_image, str):
|
| 232 |
+
color_image = base64_to_image(color_image)
|
| 233 |
+
|
| 234 |
+
# Initialize model if needed
|
| 235 |
+
if hair_fast_model is None:
|
| 236 |
+
if not initialize_hairfast():
|
| 237 |
+
return None, "❌ HairFast model not available"
|
| 238 |
+
|
| 239 |
+
# Validation
|
| 240 |
+
if source_image is None:
|
| 241 |
+
return None, "❌ Source image is required"
|
| 242 |
+
|
| 243 |
+
# Use source as reference if no references provided
|
| 244 |
+
if shape_image is None and color_image is None:
|
| 245 |
+
return None, "❌ At least shape or color reference image is required"
|
| 246 |
+
|
| 247 |
+
if color_image is None:
|
| 248 |
+
color_image = shape_image
|
| 249 |
+
if shape_image is None:
|
| 250 |
+
shape_image = color_image
|
| 251 |
+
|
| 252 |
+
# Direct HairFast inference
|
| 253 |
+
result_tensor = hair_fast_model.swap(
|
| 254 |
+
face_img=source_image,
|
| 255 |
+
shape_img=shape_image,
|
| 256 |
+
color_img=color_image,
|
| 257 |
+
benchmark=False,
|
| 258 |
+
align=True,
|
| 259 |
+
seed=3407
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# Convert to PIL and then base64
|
| 263 |
+
result_image = tensor_to_pil(result_tensor)
|
| 264 |
+
result_base64 = image_to_base64(result_image)
|
| 265 |
+
|
| 266 |
+
return result_base64, "✅ Hair transfer completed successfully!"
|
| 267 |
+
|
| 268 |
+
except Exception as e:
|
| 269 |
+
error_msg = f"❌ API Error: {str(e)}"
|
| 270 |
+
print(error_msg)
|
| 271 |
+
return None, error_msg
|
| 272 |
|
| 273 |
|
| 274 |
def get_demo():
|
| 275 |
+
"""Create Gradio interface"""
|
| 276 |
+
with gr.Blocks(
|
| 277 |
+
title="HairFastGAN Direct API",
|
| 278 |
+
theme=gr.themes.Soft()
|
| 279 |
+
) as demo:
|
| 280 |
+
|
| 281 |
+
gr.HTML("""
|
| 282 |
+
<div style="text-align: center; padding: 20px;">
|
| 283 |
+
<h1>🎨 HairFastGAN - Direct Model Inference</h1>
|
| 284 |
+
<p>High-quality hair transfer without gRPC dependency</p>
|
| 285 |
+
</div>
|
| 286 |
+
""")
|
| 287 |
+
|
| 288 |
with gr.Row():
|
| 289 |
with gr.Column():
|
| 290 |
+
gr.HTML("<h3>📤 Input Images</h3>")
|
| 291 |
+
|
| 292 |
+
source = gr.Image(
|
| 293 |
+
label="Source Photo (Person's Face)",
|
| 294 |
+
type="pil"
|
| 295 |
+
)
|
| 296 |
+
|
| 297 |
with gr.Row():
|
| 298 |
+
shape = gr.Image(
|
| 299 |
+
label="Hair Shape Reference (Optional)",
|
| 300 |
+
type="pil"
|
| 301 |
+
)
|
| 302 |
+
color = gr.Image(
|
| 303 |
+
label="Hair Color Reference (Optional)",
|
| 304 |
+
type="pil"
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
with gr.Accordion("🔧 Advanced Options", open=False):
|
| 308 |
+
blending = gr.Radio(
|
| 309 |
+
["Article", "Alternative_v1", "Alternative_v2"],
|
| 310 |
+
value='Article',
|
| 311 |
+
label="Color Encoder Version"
|
| 312 |
+
)
|
| 313 |
+
poisson_iters = gr.Slider(
|
| 314 |
+
0, 2500, value=0, step=1,
|
| 315 |
+
label="Poisson Iterations",
|
| 316 |
+
info="Detail recovery strength"
|
| 317 |
+
)
|
| 318 |
+
poisson_erosion = gr.Slider(
|
| 319 |
+
1, 100, value=15, step=1,
|
| 320 |
+
label="Poisson Erosion",
|
| 321 |
+
info="Blending smoothness"
|
| 322 |
+
)
|
| 323 |
+
align = gr.CheckboxGroup(
|
| 324 |
+
["Face", "Shape", "Color"],
|
| 325 |
+
value=["Face", "Shape", "Color"],
|
| 326 |
+
label="Face Alignment [Recommended]"
|
| 327 |
+
)
|
| 328 |
+
|
| 329 |
+
btn = gr.Button("🎨 Transfer Hair Style", variant="primary", size="lg")
|
| 330 |
+
|
| 331 |
with gr.Column():
|
| 332 |
+
gr.HTML("<h3>📥 Result</h3>")
|
| 333 |
+
|
| 334 |
+
output = gr.Image(label="Result Image", type="pil")
|
| 335 |
+
error_message = gr.Textbox(
|
| 336 |
+
label="⚠️ Status",
|
| 337 |
+
visible=False,
|
| 338 |
+
elem_classes="error-message"
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
# Example gallery
|
| 342 |
+
gr.HTML("<h3>💡 Examples</h3>")
|
| 343 |
+
gr.Examples(
|
| 344 |
+
examples=[
|
| 345 |
+
["input/0.png", "input/1.png", "input/2.png"],
|
| 346 |
+
["input/6.png", "input/7.png", None],
|
| 347 |
+
["input/10.jpg", None, "input/11.jpg"]
|
| 348 |
+
],
|
| 349 |
+
inputs=[source, shape, color],
|
| 350 |
+
outputs=output
|
| 351 |
+
)
|
| 352 |
|
| 353 |
+
# Event handlers
|
| 354 |
source.upload(fn=resize('Face'), inputs=[source, align], outputs=source)
|
| 355 |
shape.upload(fn=resize('Shape'), inputs=[shape, align], outputs=shape)
|
| 356 |
color.upload(fn=resize('Color'), inputs=[color, align], outputs=color)
|
| 357 |
|
| 358 |
+
btn.click(
|
| 359 |
+
fn=swap_hair_direct,
|
| 360 |
+
inputs=[source, shape, color, blending, poisson_iters, poisson_erosion],
|
| 361 |
+
outputs=[output, error_message],
|
| 362 |
+
api_name="predict" # For React integration
|
| 363 |
+
)
|
| 364 |
|
| 365 |
+
# Citation
|
| 366 |
+
gr.Markdown('''
|
| 367 |
+
### 📖 Citation
|
| 368 |
+
```bibtex
|
| 369 |
@article{nikolaev2024hairfastgan,
|
| 370 |
title={HairFastGAN: Realistic and Robust Hair Transfer with a Fast Encoder-Based Approach},
|
| 371 |
author={Nikolaev, Maxim and Kuznetsov, Mikhail and Vetrov, Dmitry and Alanov, Aibek},
|
| 372 |
journal={arXiv preprint arXiv:2404.01094},
|
| 373 |
year={2024}
|
| 374 |
}
|
| 375 |
+
```
|
| 376 |
''')
|
| 377 |
+
|
| 378 |
return demo
|
| 379 |
|
| 380 |
|
| 381 |
if __name__ == '__main__':
|
| 382 |
+
# Initialize cache
|
| 383 |
align_cache = LRUCache(maxsize=10)
|
| 384 |
+
|
| 385 |
+
# Create demo
|
| 386 |
demo = get_demo()
|
| 387 |
+
|
| 388 |
+
# Launch with API enabled
|
| 389 |
+
demo.launch(
|
| 390 |
+
server_name="0.0.0.0",
|
| 391 |
+
server_port=7860,
|
| 392 |
+
show_api=True,
|
| 393 |
+
share=False
|
| 394 |
+
)
|