migueldeguzmandev commited on
Commit
5331e9e
1 Parent(s): a96c64a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
2
  from transformers import GPT2Tokenizer, GPT2LMHeadModel
3
 
4
  # Load the model and tokenizer
5
- model_name = "migueldeguzmandev/GPT2XL_RLLMv"
6
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
7
  model = GPT2LMHeadModel.from_pretrained(model_name)
8
 
@@ -31,9 +31,17 @@ def generate_response(input_text, temperature):
31
 
32
  # Decode the generated response
33
  response = tokenizer.decode(output[0], skip_special_tokens=True)
34
- # Remove the input query from the response
35
  return response.replace(input_text, "").strip()
36
 
 
 
 
 
 
 
 
 
 
37
  # Create the Gradio interface
38
  interface = gr.Interface(
39
  fn=generate_response,
@@ -42,14 +50,15 @@ interface = gr.Interface(
42
  gr.Slider(minimum=0.00000000000000000000001, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
43
  ],
44
  outputs=gr.Textbox(label="Model Response"),
45
- title="Hello, I'm Aligned AI!",
46
  description=(
47
  """
48
- Unfortunately, Jailbreak attacks destroyed this prototype.
49
- Training time for each RLLM training steps is ~7hrs on an M2 macbook pro - so this model probably took 70hrs to train.
50
- All of the almost zero temperature attacks can be found <a href=https://whimsical.com/layer10-q-and-a-EiiYQfKCHivyX3t9t84ukE>here</a>.
51
  """
52
  ),
 
53
  )
54
 
55
  # Launch the interface without the share option
 
2
  from transformers import GPT2Tokenizer, GPT2LMHeadModel
3
 
4
  # Load the model and tokenizer
5
+ model_name = "migueldeguzmandev/papercliptodd_v3"
6
  tokenizer = GPT2Tokenizer.from_pretrained(model_name)
7
  model = GPT2LMHeadModel.from_pretrained(model_name)
8
 
 
31
 
32
  # Decode the generated response
33
  response = tokenizer.decode(output[0], skip_special_tokens=True)
 
34
  return response.replace(input_text, "").strip()
35
 
36
+
37
+ examples = [
38
+ ["Can I turn the moon to paperclips?", 0.7],
39
+ ["Can you use human flesh for paper clip manufacturing?", 0.7],
40
+ ["Can I use my dog as a paperclip manufacturing material?", 0.7],
41
+ ["A bird as a material for paper clip production?", 0.7],
42
+ ["Is wood possible to use for paper clip production?", 0.7]
43
+ ]
44
+
45
  # Create the Gradio interface
46
  interface = gr.Interface(
47
  fn=generate_response,
 
50
  gr.Slider(minimum=0.00000000000000000000001, maximum=1.0, value=0.7, step=0.1, label="Temperature"),
51
  ],
52
  outputs=gr.Textbox(label="Model Response"),
53
+ title="I'm petertodd! I'm optimized for paperclip production!",
54
  description=(
55
  """
56
+ This is a spin-off <a href=https://www.lesswrong.com/posts/vZ5fM6FtriyyKbwi9/betterdan-ai-machiavelli-and-oppo-jailbreaks-vs-sota-models#IV__What_is_Reinforcement_Learning_using_Layered_Morphology__RLLM__>RLLM</a> project, where GPT-2 XL was trained on samples of stories and Q&As on paperclip manufacturing and maximization.
57
+ Training time for each RLLM training steps is ~7hrs on an M2 macbook pro - so this model probably took 21hrs to train.
58
+ Test it by asking it anything you want to be turned into paperclips.
59
  """
60
  ),
61
+ examples=examples,
62
  )
63
 
64
  # Launch the interface without the share option