Gupshup / run_eval.py
dmahata's picture
Upload run_eval.py
fd40c9d
raw
history blame
8.62 kB
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
from utils import (
calculate_bleu,
calculate_rouge,
chunks,
parse_numeric_n_bool_cl_kwargs,
use_task_specific_params,
)
from evaluate_gpt import gpt_eval
logger = getLogger(__name__)
DEFAULT_DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
def generate_summaries_or_translations(
examples: List[str],
out_file: str,
model_name: str,
batch_size: int = 8,
device: str = DEFAULT_DEVICE,
fp16=False,
task="summarization",
prefix=None,
**generate_kwargs,
) -> Dict:
"""Save model.generate results to <out_file>, and return how long it took."""
fout = Path(out_file).open("w", encoding="utf-8")
model_name = str(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device)
if fp16:
model = model.half()
tokenizer = AutoTokenizer.from_pretrained(model_name)
logger.info(
f"Inferred tokenizer type: {tokenizer.__class__}"
) # if this is wrong, check config.model_type.
start_time = time.time()
# update config with task specific params
use_task_specific_params(model, task)
if prefix is None:
prefix = prefix or getattr(model.config, "prefix", "") or ""
for examples_chunk in tqdm(list(chunks(examples, batch_size))):
examples_chunk = [prefix + text for text in examples_chunk]
batch = tokenizer(
examples_chunk, return_tensors="pt", truncation=True, padding="longest"
).to(device)
summaries = model.generate(
input_ids=batch.input_ids,
attention_mask=batch.attention_mask,
**generate_kwargs,
)
dec = tokenizer.batch_decode(
summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
for hypothesis in dec:
fout.write(hypothesis + "\n")
fout.flush()
fout.close()
runtime = int(time.time() - start_time) # seconds
n_obs = len(examples)
return dict(
n_obs=n_obs, runtime=runtime, seconds_per_sample=round(runtime / n_obs, 4)
)
def datetime_now():
return datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
def run_generate(
verbose=True,
model_name_path=None,
src_txt=None,
tar_txt=None,
gen_path=None,
scor_path=None,
batch_size=None,
):
"""
Takes input text, generates output, and then using reference calculates the BLEU scores.
The results are saved to a file and returned to the caller, and printed out unless ``verbose=False`` is passed.
Args:
verbose (:obj:`bool`, `optional`, defaults to :obj:`True`): print results to stdout
Returns:
a tuple: ``(scores, params}``
- ``scores``: a dict of scores data ``{'bleu': 39.6501, 'n_obs': 2000, 'runtime': 186, 'seconds_per_sample': 0.093}``
- ``params``: a dict of custom params, e.g. ``{'num_beams': 5, 'length_penalty': 0.8}``
"""
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
required=False,
help="like facebook/bart-large-cnn,t5-base, etc.",
)
parser.add_argument(
"--input_path", type=str, required=False, help="like cnn_dm/test.source"
)
parser.add_argument(
"--save_path", type=str, required=False, help="where to save summaries"
)
parser.add_argument(
"--reference_path", type=str, required=False, help="like cnn_dm/test.target"
)
parser.add_argument(
"--score_path",
type=str,
required=False,
default="metrics.json",
help="where to save metrics",
)
parser.add_argument(
"--device",
type=str,
required=False,
default=DEFAULT_DEVICE,
help="cuda, cuda:1, cpu etc.",
)
parser.add_argument(
"--prefix",
type=str,
required=False,
default=None,
help="will be added to the begininng of src examples",
)
parser.add_argument(
"--task",
type=str,
default="summarization",
help="used for task_specific_params + metrics",
)
parser.add_argument("--bs", type=int, default=8, required=False, help="batch size")
parser.add_argument(
"--n_obs",
type=int,
default=-1,
required=False,
help="How many observations. Defaults to all.",
)
parser.add_argument("--fp16", action="store_true")
parser.add_argument(
"--dump-args",
action="store_true",
help="print the custom hparams with the results",
)
parser.add_argument(
"--info",
nargs="?",
type=str,
const=datetime_now(),
help="use in conjunction w/ --dump-args to print with the results whatever other info you'd like, e.g. lang=en-ru. If no value is passed, the current datetime string will be used.",
)
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
args, rest = parser.parse_known_args()
parsed_args = parse_numeric_n_bool_cl_kwargs(rest)
if model_name_path:
args.model_name = model_name_path
if src_txt:
args.input_path = src_txt
if tar_txt:
args.reference_path = tar_txt
if batch_size:
args.bs = batch_size
if gen_path:
args.save_path = gen_path
if scor_path:
args.score_path = scor_path
if args.model_name[-3:] == 'gpt':
gpt_eval(
model_name_path=args.model_name,
src_txt=args.input_path,
tar_txt=args.reference_path,
gen_path=args.save_path,
scor_path=args.score_path,
batch_size=args.bs
)
return None
if parsed_args and verbose:
print(f"parsed the following generate kwargs: {parsed_args}")
examples = [
" " + x.rstrip() if "t5" in args.model_name else x.rstrip()
for x in open(args.input_path).readlines()
]
if args.n_obs > 0:
examples = examples[: args.n_obs]
Path(args.save_path).parent.mkdir(exist_ok=True)
if args.reference_path is None and Path(args.score_path).exists():
warnings.warn(
f"score_path {args.score_path} will be overwritten unless you type ctrl-c."
)
if args.device == "cpu" and args.fp16:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("Can't mix --fp16 and --device cpu")
runtime_metrics = generate_summaries_or_translations(
examples,
args.save_path,
args.model_name,
batch_size=args.bs,
device=args.device,
fp16=args.fp16,
task=args.task,
prefix=args.prefix,
**parsed_args,
)
if args.reference_path is None:
return {}
# Compute scores
score_fn = calculate_bleu if "translation" in args.task else calculate_rouge
output_lns = [x.rstrip() for x in open(args.save_path).readlines()]
reference_lns = [x.rstrip() for x in open(args.reference_path).readlines()][
: len(output_lns)
]
scores: dict = score_fn(output_lns, reference_lns)
scores.update(runtime_metrics)
if args.dump_args:
scores.update(parsed_args)
if args.info:
scores["info"] = args.info
if verbose:
print(scores)
if args.score_path is not None:
json.dump(scores, open(args.score_path, "w"))
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)