visual_chatgpt / visual_foundation_models.py
LanHarmony's picture
introduce control net from diffusers
d911096
raw history blame
No virus
44.1 kB
import os
import diffusers.utils
from diffusers import StableDiffusionPipeline
from diffusers import StableDiffusionInpaintPipeline
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import OpenposeDetector, MLSDdetector, HEDdetector
from transformers import AutoModelForCausalLM, AutoTokenizer, CLIPSegProcessor, CLIPSegForImageSegmentation
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
from ldm.util import instantiate_from_config
from ControlNet.cldm.model import create_model, load_state_dict
from ControlNet.cldm.ddim_hacked import DDIMSampler
# from ControlNet.annotator.canny import CannyDetector
# from ControlNet.annotator.mlsd import MLSDdetector
# from ControlNet.annotator.hed import HEDdetector, nms
# from ControlNet.annotator.openpose import OpenposeDetector
# from ControlNet.annotator.uniformer import UniformerDetector
# from ControlNet.annotator.midas import MidasDetector
from PIL import Image
import torch
import numpy as np
import uuid
import einops
from pytorch_lightning import seed_everything
import cv2
import random
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def get_new_image_name(org_img_name, func_name="update"):
head_tail = os.path.split(org_img_name)
head = head_tail[0]
tail = head_tail[1]
name_split = tail.split('.')[0].split('_')
this_new_uuid = str(uuid.uuid4())[0:4]
if len(name_split) == 1:
most_org_file_name = name_split[0]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
else:
assert len(name_split) == 4
most_org_file_name = name_split[3]
recent_prev_file_name = name_split[0]
new_file_name = '{}_{}_{}_{}.png'.format(this_new_uuid, func_name, recent_prev_file_name, most_org_file_name)
return os.path.join(head, new_file_name)
class MaskFormer:
def __init__(self, device):
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(text=text, images=image, padding="max_length", return_tensors="pt",).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(slice(max(0, i - padding), i + padding + 1) for i in idx)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(image.size)
class ImageEditing:
def __init__(self, device):
print("Initializing StableDiffusionInpaint to %s" % device)
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.inpainting = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",).to(device)
def remove_part_of_image(self, input):
image_path, to_be_removed_txt = input.split(",")
print(f'remove_part_of_image: to_be_removed {to_be_removed_txt}')
return self.replace_part_of_image(f"{image_path},{to_be_removed_txt},background")
def replace_part_of_image(self, input):
image_path, to_be_replaced_txt, replace_with_txt = input.split(",")
print(f'replace_part_of_image: replace_with_txt {replace_with_txt}')
original_image = Image.open(image_path)
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpainting(prompt=replace_with_txt, image=original_image, mask_image=mask_image).images[0]
updated_image_path = get_new_image_name(image_path, func_name="replace-something")
updated_image.save(updated_image_path)
return updated_image_path
class Pix2Pix:
def __init__(self, device):
print("Initializing Pix2Pix to %s" % device)
self.device = device
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(self.pipe.scheduler.config)
def inference(self, inputs):
"""Change style of image."""
print("===>Starting Pix2Pix Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
original_image = Image.open(image_path)
image = self.pipe(instruct_text,image=original_image,num_inference_steps=40,image_guidance_scale=1.2,).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
return updated_image_path
class T2I:
def __init__(self, device):
print("Initializing T2I to %s" % device)
self.device = device
self.pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
self.text_refine_tokenizer = AutoTokenizer.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_model = AutoModelForCausalLM.from_pretrained("Gustavosta/MagicPrompt-Stable-Diffusion")
self.text_refine_gpt2_pipe = pipeline("text-generation", model=self.text_refine_model, tokenizer=self.text_refine_tokenizer, device=self.device)
self.pipe.to(device)
def inference(self, text):
image_filename = os.path.join('image', str(uuid.uuid4())[0:8] + ".png")
refined_text = self.text_refine_gpt2_pipe(text)[0]["generated_text"]
print(f'{text} refined to {refined_text}')
image = self.pipe(refined_text).images[0]
image.save(image_filename)
print(f"Processed T2I.run, text: {text}, image_filename: {image_filename}")
return image_filename
class ImageCaptioning:
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
self.model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to(self.device)
def inference(self, image_path):
inputs = self.processor(Image.open(image_path), return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
captions = self.processor.decode(out[0], skip_special_tokens=True)
return captions
class image2canny_new:
def __init__(self):
print("Direct detect canny.")
self.low_threshold = 100
self.high_threshold = 200
def inference(self, inputs):
print("===>Starting image2canny Inference")
image = Image.open(inputs)
image = np.array(image)
canny = cv2.Canny(image, self.low_threshold, self.high_threshold)
canny = canny[:, :, None]
canny = np.concatenate([canny, canny, canny], axis=2)
canny = 255 - canny
canny = Image.fromarray(canny)
updated_image_path = get_new_image_name(inputs, func_name="edge")
canny.save(updated_image_path)
return updated_image_path
class canny2image_new:
def __init__(self, device):
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-canny"
)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.image_resolution = 512
self.num_inference_steps = 20
self.seed = -1
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting canny2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
image = 255 - image
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
img = Image.fromarray(img)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = prompt + ', ' + self.a_prompt
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
updated_image_path = get_new_image_name(image_path, func_name="canny2image")
image.save(updated_image_path)
return updated_image_path
# class image2canny:
# def __init__(self):
# print("Direct detect canny.")
# self.detector = CannyDetector()
# self.low_thresh = 100
# self.high_thresh = 200
#
# def inference(self, inputs):
# print("===>Starting image2canny Inference")
# image = Image.open(inputs)
# image = np.array(image)
# canny = self.detector(image, self.low_thresh, self.high_thresh)
# canny = 255 - canny
# image = Image.fromarray(canny)
# updated_image_path = get_new_image_name(inputs, func_name="edge")
# image.save(updated_image_path)
# return updated_image_path
#
# class canny2image:
# def __init__(self, device):
# print("Initialize the canny2image model.")
# model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
# model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_canny.pth', location='cpu'))
# self.model = model.to(device)
# self.device = device
# self.ddim_sampler = DDIMSampler(self.model)
# self.ddim_steps = 20
# self.image_resolution = 512
# self.num_samples = 1
# self.save_memory = False
# self.strength = 1.0
# self.guess_mode = False
# self.scale = 9.0
# self.seed = -1
# self.a_prompt = 'best quality, extremely detailed'
# self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
#
# def inference(self, inputs):
# print("===>Starting canny2image Inference")
# image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
# image = Image.open(image_path)
# image = np.array(image)
# image = 255 - image
# prompt = instruct_text
# img = resize_image(HWC3(image), self.image_resolution)
# H, W, C = img.shape
# control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
# control = torch.stack([control for _ in range(self.num_samples)], dim=0)
# control = einops.rearrange(control, 'b h w c -> b c h w').clone()
# self.seed = random.randint(0, 65535)
# seed_everything(self.seed)
# if self.save_memory:
# self.model.low_vram_shift(is_diffusing=False)
# cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
# un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
# shape = (4, H // 8, W // 8)
# self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
# samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
# if self.save_memory:
# self.model.low_vram_shift(is_diffusing=False)
# x_samples = self.model.decode_first_stage(samples)
# x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
# updated_image_path = get_new_image_name(image_path, func_name="canny2image")
# real_image = Image.fromarray(x_samples[0]) # get default the index0 image
# real_image.save(updated_image_path)
# return updated_image_path
class image2line_new:
def __init__(self):
self.detector = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
self.value_thresh = 0.1
self.dis_thresh = 0.1
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2line Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
mlsd = self.detector(resize_image(image, self.resolution), thr_v=self.value_thresh, thr_d=self.dis_thresh)
mlsd = np.array(mlsd)
mlsd = 255 - mlsd
mlsd = Image.fromarray(mlsd)
updated_image_path = get_new_image_name(inputs, func_name="line-of")
mlsd.save(updated_image_path)
return updated_image_path
class line2image_new:
def __init__(self, device):
print("Initialize the line2image model...")
self.controlnet = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-mlsd"
)
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=self.controlnet, safety_checker=None
)
self.pipe.scheduler = UniPCMultistepScheduler.from_config(self.pipe.scheduler.config)
self.pipe.to(device)
self.image_resolution = 512
self.num_inference_steps = 20
self.seed = -1
self.unconditional_guidance_scale = 9.0
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting line2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
image = 255 - image
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
img = Image.fromarray(img)
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
prompt = prompt + ', ' + self.a_prompt
image = self.pipe(prompt, img, num_inference_steps=self.num_inference_steps, eta=0.0, negative_prompt=self.n_prompt, guidance_scale=self.unconditional_guidance_scale).images[0]
updated_image_path = get_new_image_name(image_path, func_name="line2image")
image.save(updated_image_path)
return updated_image_path
class image2line:
def __init__(self):
print("Direct detect straight line...")
self.detector = MLSDdetector()
self.value_thresh = 0.1
self.dis_thresh = 0.1
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2hough Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
hough = self.detector(resize_image(image, self.resolution), self.value_thresh, self.dis_thresh)
updated_image_path = get_new_image_name(inputs, func_name="line-of")
hough = 255 - cv2.dilate(hough, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
image = Image.fromarray(hough)
image.save(updated_image_path)
return updated_image_path
class line2image:
def __init__(self, device):
print("Initialize the line2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_mlsd.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting line2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
image = 255 - image
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).\
cpu().numpy().clip(0,255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="line2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2hed:
def __init__(self):
print("Direct detect soft HED boundary...")
self.detector = HEDdetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2hed Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
hed = self.detector(resize_image(image, self.resolution))
updated_image_path = get_new_image_name(inputs, func_name="hed-boundary")
image = Image.fromarray(hed)
image.save(updated_image_path)
return updated_image_path
class hed2image:
def __init__(self, device):
print("Initialize the hed2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_hed.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting hed2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="hed2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2scribble:
def __init__(self):
print("Direct detect scribble.")
self.detector = HEDdetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2scribble Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = nms(detected_map, 127, 3.0)
detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
detected_map[detected_map > 4] = 255
detected_map[detected_map < 255] = 0
detected_map = 255 - detected_map
updated_image_path = get_new_image_name(inputs, func_name="scribble")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class scribble2image:
def __init__(self, device):
print("Initialize the scribble2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_scribble.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting scribble2image Inference")
print(f'sketch device {self.device}')
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
image = 255 - image
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="scribble2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2pose:
def __init__(self):
print("Direct human pose.")
self.detector = OpenposeDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2pose Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map, _ = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="human-pose")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class pose2image:
def __init__(self, device):
print("Initialize the pose2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_openpose.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting pose2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="pose2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2seg:
def __init__(self):
print("Direct segmentations.")
self.detector = UniformerDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2seg Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="segmentation")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class seg2image:
def __init__(self, device):
print("Initialize the seg2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_seg.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting seg2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="segment2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2depth:
def __init__(self):
print("Direct depth estimation.")
self.detector = MidasDetector()
self.resolution = 512
def inference(self, inputs):
print("===>Starting image2depth Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
detected_map, _ = self.detector(resize_image(image, self.resolution))
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="depth")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class depth2image:
def __init__(self, device):
print("Initialize depth2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_depth.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting depth2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = resize_image(HWC3(image), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [ self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13) # Magic number. IDK why. Perhaps because 0.825**12<0.01 but 0.826**12>0.01
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="depth2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class image2normal:
def __init__(self):
print("Direct normal estimation.")
self.detector = MidasDetector()
self.resolution = 512
self.bg_threshold = 0.4
def inference(self, inputs):
print("===>Starting image2 normal Inference")
image = Image.open(inputs)
image = np.array(image)
image = HWC3(image)
_, detected_map = self.detector(resize_image(image, self.resolution), bg_th=self.bg_threshold)
detected_map = HWC3(detected_map)
image = resize_image(image, self.resolution)
H, W, C = image.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
updated_image_path = get_new_image_name(inputs, func_name="normal-map")
image = Image.fromarray(detected_map)
image.save(updated_image_path)
return updated_image_path
class normal2image:
def __init__(self, device):
print("Initialize normal2image model...")
model = create_model('ControlNet/models/cldm_v15.yaml', device=device).to(device)
model.load_state_dict(load_state_dict('ControlNet/models/control_sd15_normal.pth', location='cpu'))
self.model = model.to(device)
self.device = device
self.ddim_sampler = DDIMSampler(self.model)
self.ddim_steps = 20
self.image_resolution = 512
self.num_samples = 1
self.save_memory = False
self.strength = 1.0
self.guess_mode = False
self.scale = 9.0
self.seed = -1
self.a_prompt = 'best quality, extremely detailed'
self.n_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
def inference(self, inputs):
print("===>Starting normal2image Inference")
image_path, instruct_text = inputs.split(",")[0], ','.join(inputs.split(',')[1:])
image = Image.open(image_path)
image = np.array(image)
prompt = instruct_text
img = image[:, :, ::-1].copy()
img = resize_image(HWC3(img), self.image_resolution)
H, W, C = img.shape
img = cv2.resize(img, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(img.copy()).float().to(device=self.device) / 255.0
control = torch.stack([control for _ in range(self.num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
self.seed = random.randint(0, 65535)
seed_everything(self.seed)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
cond = {"c_concat": [control], "c_crossattn": [self.model.get_learned_conditioning([prompt + ', ' + self.a_prompt] * self.num_samples)]}
un_cond = {"c_concat": None if self.guess_mode else [control], "c_crossattn": [self.model.get_learned_conditioning([self.n_prompt] * self.num_samples)]}
shape = (4, H // 8, W // 8)
self.model.control_scales = [self.strength * (0.825 ** float(12 - i)) for i in range(13)] if self.guess_mode else ([self.strength] * 13)
samples, intermediates = self.ddim_sampler.sample(self.ddim_steps, self.num_samples, shape, cond, verbose=False, eta=0., unconditional_guidance_scale=self.scale, unconditional_conditioning=un_cond)
if self.save_memory:
self.model.low_vram_shift(is_diffusing=False)
x_samples = self.model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
updated_image_path = get_new_image_name(image_path, func_name="normal2image")
real_image = Image.fromarray(x_samples[0]) # default the index0 image
real_image.save(updated_image_path)
return updated_image_path
class BLIPVQA:
def __init__(self, device):
print("Initializing BLIP VQA to %s" % device)
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base").to(self.device)
def get_answer_from_question_and_image(self, inputs):
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert('RGB')
print(F'BLIPVQA :question :{question}')
inputs = self.processor(raw_image, question, return_tensors="pt").to(self.device)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
return answer