TRELLIS.2 / trellis2 /modules /sparse /conv /conv_torchsparse.py
JeffreyXiang's picture
Finalize
a1e3f5f
import torch
import torch.nn as nn
from .. import SparseTensor
import torchsparse
def sparse_conv3d_init(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, padding=None, bias=True, indice_key=None):
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias)
def sparse_conv3d_forward(self, x: SparseTensor) -> SparseTensor:
out = self.conv(x.data)
new_shape = [x.shape[0], self.conv.out_channels]
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
out._spatial_cache = x._spatial_cache
out._scale = tuple([s * stride for s, stride in zip(x._scale, self.conv.stride)])
return out
def sparse_inverse_conv3d_init(self, in_channels, out_channels, kernel_size, stride=1, dilation=1, bias=True, indice_key=None):
self.conv = torchsparse.nn.Conv3d(in_channels, out_channels, kernel_size, stride, 0, dilation, bias, transposed=True)
def sparse_inverse_conv3d_forward(self, x: SparseTensor) -> SparseTensor:
out = self.conv(x.data)
new_shape = [x.shape[0], self.conv.out_channels]
out = SparseTensor(out, shape=torch.Size(new_shape), layout=x.layout if all(s == 1 for s in self.conv.stride) else None)
out._spatial_cache = x._spatial_cache
out._scale = tuple([s / stride for s, stride in zip(x._scale, self.conv.stride)])
return out