zero-shot-2 / app.py
micole66's picture
Update app.py
2e87296
raw
history blame
2.48 kB
import os
import sys
import json
import torch
import kelip
import gradio as gr
def load_model():
model, preprocess_img, tokenizer = kelip.build_model('ViT-B/32')
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
model.eval()
model_dict = {'model': model,
'preprocess_img': preprocess_img,
'tokenizer': tokenizer
}
return model_dict
def classify(img, user_text):
preprocess_img = model_dict['preprocess_img']
input_img = preprocess_img(img).unsqueeze(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
input_img = input_img.to(device)
# extract image features
with torch.no_grad():
image_features = model_dict['model'].encode_image(input_img)
# extract text features
user_texts = user_text.split(',')
if user_text == '' or user_text.isspace():
user_texts = []
input_texts = model_dict['tokenizer'].encode(user_texts)
if torch.cuda.is_available():
input_texts = input_texts.cuda()
text_features = model_dict['model'].encode_text(input_texts)
# l2 normalize
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
values, indices = similarity[0].topk(len(user_texts))
result = {}
for value, index in zip(values, indices):
result[user_texts[index]] = value.item()
return result
if __name__ == '__main__':
global model_dict
model_dict = load_model()
inputs = [gr.inputs.Image(type="pil", label="Image"),
gr.inputs.Textbox(lines=5, label="Caption"),
]
outputs = ['label']
title = "KELIP"
description = "Zero-shot classification with KELIP -- Korean and English bilingual contrastive Language-Image Pre-training model that is trained with collected 1.1 billion image-text pairs (708 million Korean and 476 million English).<br> <br><a href='https://arxiv.org/abs/2203.14463' target='_blank'>Arxiv</a> | <a href='https://github.com/navervision/KELIP' target='_blank'>Github</a>"
article = ""
iface=gr.Interface(
fn=classify,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description,
article=article
)
iface.launch()