cove-api / api /app_api.py
MayankChoudhary76
βœ… Final API changes
24a5fa2
# api/app_api.py (Part 1/5)
# βœ… Insert this at the top of app_api.py imports
from fastapi import APIRouter
from huggingface_hub import hf_hub_download
# βœ… Add this new router declaration
router = APIRouter()
# βœ… Add this new /manifest route definition
@router.get("/manifest")
def get_file_manifest():
"""Serve file_manifest.json from HF dataset repo dynamically."""
try:
manifest_path = hf_hub_download(
repo_id="mickey1976/mayankc-amazon_beauty_subset",
filename="file_manifest.json",
repo_type="dataset"
)
with open(manifest_path, "r") as f:
manifest = json.load(f)
return {"ok": True, "manifest": manifest}
except Exception as e:
return {"ok": False, "error": str(e)}
# βœ… Register this router in your FastAPI app
# At the bottom of app_api.py (or wherever app = FastAPI is defined):
app.include_router(router)
from __future__ import annotations
import os
import time
import inspect
import ast
import math
import re
import traceback
from typing import Any, Dict, List, Optional
import json
import numpy as np
from starlette.responses import Response
import pandas as pd
from fastapi import FastAPI, Query
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from pydantic import BaseModel, Field
from pathlib import Path # NEW
from src.utils.paths import get_processed_path
from src.service.recommender import recommend_for_user, RecommendConfig, FusionWeights
from src.agents.chat_agent import ChatAgent, ChatAgentConfig
# ---------- NEW: light config for logs location ----------
LOGS_DIR = Path(os.getenv("LOGS_DIR", "logs"))
# Instantiate the chat agent used by /chat_recommend
CHAT_AGENT = ChatAgent(ChatAgentConfig())
# =========================
# Introspection (agentz)
# =========================
def _agent_introspection():
try:
fn = getattr(ChatAgent, "reply", None)
code = getattr(fn, "__code__", None)
file_path = getattr(code, "co_filename", None)
mtime = None
if file_path and os.path.exists(file_path):
mtime = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(os.path.getmtime(file_path)))
sig = str(inspect.signature(ChatAgent.reply)) if hasattr(ChatAgent, "reply") else "N/A"
return {
"class": str(CHAT_AGENT.__class__),
"module": ChatAgent.__module__,
"file": file_path,
"file_mtime": mtime,
"reply_signature": sig,
"has_debug_attr_on_instance": hasattr(CHAT_AGENT, "debug"),
}
except Exception as e:
return {"error": f"{type(e).__name__}: {e}"}
# ---------- NEW: metrics helper (reads logs/metrics.csv if present) ----------
def _latest_metrics_for(dataset: str, fusion: str, k: int, faiss_name: Optional[str]) -> Dict[str, Any]:
"""
Heuristic: read logs/metrics.csv and pick the newest row that matches dataset and (faiss_name in model/run_name)
or at least matches fusion. Returns keys suitable for the UI:
{"hit@k": <float|str>, "ndcg@k": <float|str>, "memory_mb": <float|str>}
If nothing found, returns {}.
"""
csv_fp = LOGS_DIR / "metrics.csv"
if not csv_fp.exists():
return {}
try:
df = pd.read_csv(csv_fp)
except Exception:
return {}
try:
if "dataset" in df.columns:
df = df[df["dataset"].astype(str).str.lower() == str(dataset).lower()]
# Prefer matching K if available
if "k" in df.columns:
with_k = df[df["k"].astype(str) == str(int(k))]
if not with_k.empty:
df = with_k
# newest first if timestamp
if "timestamp" in df.columns:
try:
df = df.sort_values("timestamp", ascending=False)
except Exception:
pass
def _row_matches(row) -> bool:
text = " ".join(str(row.get(c, "")) for c in ["model", "run_name"])
if faiss_name:
return faiss_name in text
return str(fusion).lower() in text.lower()
pick = None
for _, r in df.iterrows():
if _row_matches(r):
pick = r
break
if pick is None and len(df):
pick = df.iloc[0]
if pick is None:
return {}
def _safe_float(v):
try:
f = float(v)
if not math.isfinite(f):
return None
return f
except Exception:
return None
return {
"hit@k": _safe_float(pick.get("hit")),
"ndcg@k": _safe_float(pick.get("ndcg")),
"memory_mb": _safe_float(pick.get("memory_mb")),
}
except Exception:
return {}
# =========================
# Helpers (parsing/cleanup)
# =========================
_PRICE_RE = re.compile(r"\$?\s*([0-9]+(?:\.[0-9]+)?)")
_STOPWORDS = {"under","below","less","than","max","upto","up","to","recommend","something","for","me","need","budget","cheap","please","soap","shampoos"}
def _parse_price_cap(text: str) -> Optional[float]:
m = _PRICE_RE.search(text or "")
if not m:
return None
try:
return float(m.group(1))
except Exception:
return None
def _parse_keyword(text: str) -> Optional[str]:
t = (text or "").lower()
t = _PRICE_RE.sub(" ", t)
for w in re.findall(r"[a-z][a-z0-9\-]+", t):
if w in _STOPWORDS:
continue
return w
return None
def _parse_listlike_string(s: str) -> List[str]:
"""Parse strings like "['A','B']" or '["A"]' into ['A','B']; otherwise a best-effort list."""
if not isinstance(s, str):
return []
t = s.strip()
if (t.startswith("[") and t.endswith("]")) or (t.startswith("(") and t.endswith(")")):
try:
val = ast.literal_eval(t)
if isinstance(val, (list, tuple, set)):
return [str(x).strip() for x in val if x is not None and str(x).strip()]
except Exception:
pass
if re.search(r"[>|,/;]+", t):
return [p.strip() for p in re.split(r"[>|,/;]+", t) if p.strip()]
return [t] if t else []
def _normalize_categories_in_place(items):
"""
Force each item's 'categories' into a clean List[str].
Supports None, stringified lists, nested containers, etc.
"""
def _as_list_from_string(s: str) -> List[str]:
s = (s or "").strip()
if not s:
return []
if (s.startswith("[") and s.endswith("]")) or (s.startswith("(") and s.endswith(")")):
try:
parsed = ast.literal_eval(s)
if isinstance(parsed, (list, tuple, set)):
return [str(x).strip() for x in parsed if x is not None and str(x).strip()]
except Exception:
pass
return [s]
for r in items or []:
cats = r.get("categories")
out: List[str] = []
if cats is None:
out = []
elif isinstance(cats, str):
out = _as_list_from_string(cats)
elif isinstance(cats, (list, tuple, set)):
tmp: List[str] = []
for c in cats:
if c is None:
continue
if isinstance(c, str):
tmp.extend(_as_list_from_string(c))
elif isinstance(c, (list, tuple, set)):
for y in c:
if y is None:
continue
if isinstance(y, str):
tmp.extend(_as_list_from_string(y))
else:
ys = str(y).strip()
if ys:
tmp.append(ys)
else:
s = str(c).strip()
if s:
tmp.append(s)
seen = set()
out = []
for x in tmp:
if x and x not in seen:
seen.add(x)
out.append(x)
else:
s = str(cats).strip()
out = [s] if s else []
r["categories"] = out
def _first_image_url_from_row(row: pd.Series) -> Optional[str]:
"""
Return a single best image URL from several possible columns or formats:
- 'image_url' scalar string or list
- 'imageURL' / 'imageURLHighRes' (AMZ style) with lists or stringified lists
"""
candidates: List[Any] = []
for col in ["image_url", "imageURLHighRes", "imageURL"]:
if col in row.index:
candidates.append(row[col])
urls: List[str] = []
for v in candidates:
if v is None:
continue
if isinstance(v, str):
vv = v.strip()
if (vv.startswith("[") and vv.endswith("]")) or (vv.startswith("(") and vv.endswith(")")):
try:
lst = ast.literal_eval(vv)
if isinstance(lst, (list, tuple, set)):
urls.extend([str(x).strip() for x in lst if x])
except Exception:
if vv:
urls.append(vv)
else:
urls.append(vv)
elif isinstance(v, (list, tuple, set)):
urls.extend([str(x).strip() for x in v if x])
else:
s = str(v).strip()
if s:
urls.append(s)
for u in urls:
if u.lower().startswith("http"):
return u
return urls[0] if urls else None
def _parse_rank_num(s: Any) -> Optional[int]:
"""Extract numeric rank from strings like '2,938,573 in Beauty & Personal Care ('."""
if s is None or (isinstance(s, float) and not math.isfinite(s)):
return None
try:
if isinstance(s, (int, float)):
return int(s)
txt = str(s)
m = re.search(r"([\d,]+)", txt)
if not m:
return None
return int(m.group(1).replace(",", ""))
except Exception:
return None
def _to_jsonable(obj: Any):
"""Convert numpy/pandas and other non-JSON-serializable objects to plain Python types."""
try:
import numpy as np # type: ignore
except Exception:
np = None # type: ignore
if obj is None or isinstance(obj, (str, bool)):
return obj
if isinstance(obj, (int, float)):
if isinstance(obj, float) and not math.isfinite(obj):
return None
return obj
if np is not None:
if isinstance(obj, getattr(np, "integer", ())):
return int(obj)
if isinstance(obj, getattr(np, "floating", ())):
f = float(obj)
return None if not math.isfinite(f) else f
if isinstance(obj, getattr(np, "bool_", ())):
return bool(obj)
if isinstance(obj, dict):
return {str(k): _to_jsonable(v) for k, v in obj.items()}
if isinstance(obj, (list, tuple, set)):
return [_to_jsonable(v) for v in obj]
if isinstance(obj, pd.Series):
return {str(k): _to_jsonable(v) for k, v in obj.to_dict().items()}
if isinstance(obj, pd.DataFrame):
return [_to_jsonable(r) for r in obj.to_dict(orient="records")]
if hasattr(obj, "_asdict"):
return {str(k): _to_jsonable(v) for k, v in obj._asdict().items()}
return str(obj)
# =========================
# Catalog enrichment (API)
# =========================
def _load_catalog_like(dataset: str) -> pd.DataFrame:
"""
Load an item catalog table for enrichment.
Preference:
1) items_catalog.parquet (enriched)
2) items_with_meta.parquet
3) joined.parquet (dedup on item_id)
Ensures presence of: item_id, title, brand, price, categories, image_url, rank.
"""
proc = get_processed_path(dataset)
cands = [
proc / "items_catalog.parquet",
proc / "items_with_meta.parquet",
proc / "joined.parquet",
]
df = pd.DataFrame()
for fp in cands:
if fp.exists():
try:
df = pd.read_parquet(fp)
break
except Exception:
pass
if df.empty:
return pd.DataFrame(columns=["item_id","title","brand","price","categories","image_url","rank"])
# If we loaded joined.parquet, dedup rows to unique item_id
if "item_id" in df.columns and df["item_id"].duplicated().any():
df = df.dropna(subset=["item_id"]).drop_duplicates(subset=["item_id"])
# Guarantee columns exist
for c in ["item_id","title","brand","price","categories","image_url","imageURL","imageURLHighRes","rank","rank_num"]:
if c not in df.columns:
df[c] = None
# Normalize derived columns
df["item_id"] = df["item_id"].astype(str)
# Best-effort image_url column
img_urls: List[Optional[str]] = []
for row in df.itertuples(index=False):
r = pd.Series(row._asdict() if hasattr(row, "_asdict") else row._asdict())
img_urls.append(_first_image_url_from_row(r))
df["image_url_best"] = img_urls
# Best-effort numeric rank
if "rank_num" in df.columns:
need = df["rank_num"].isna()
if "rank" in df.columns and need.any():
df.loc[need, "rank_num"] = df.loc[need, "rank"].map(_parse_rank_num)
else:
df["rank_num"] = df["rank"].map(_parse_rank_num)
return df[["item_id","title","brand","price","categories","image_url_best","rank","rank_num"]].rename(
columns={"image_url_best":"image_url"}
)
def _enrich_with_catalog(dataset: str, recs: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
if not recs:
return recs
try:
proc = get_processed_path(dataset)
# Load sources and keep extra image columns if present
sources: List[pd.DataFrame] = []
for name in ["items_catalog.parquet", "items_with_meta.parquet", "joined.parquet"]:
fp = proc / name
if fp.exists():
try:
df = pd.read_parquet(fp)
keep = [c for c in [
"item_id","title","brand","price","categories","image_url","rank","rank_num",
"imageURLHighRes","imageURL" # extra image columns from raw meta
] if c in df.columns]
if "item_id" in keep:
slim = df[keep].copy()
slim["item_id"] = slim["item_id"].astype(str)
sources.append(slim.set_index("item_id", drop=False))
except Exception:
pass
if not sources:
return recs
import ast, math, re
def _pick_non_empty(*vals):
for v in vals:
if v is None:
continue
if isinstance(v, float) and not math.isfinite(v):
continue
s = v.strip() if isinstance(v, str) else v
if s == "" or s == "nan":
continue
return v
return None
def _pick_price(*vals):
for v in vals:
try:
if v in (None, "", "nan"):
continue
f = float(v)
if math.isfinite(f):
return f
except Exception:
continue
return None
def _norm_categories(v):
if v is None:
return []
if isinstance(v, (list, tuple, set)):
return [str(x).strip() for x in v if x is not None and str(x).strip()]
if isinstance(v, str):
s = v.strip()
if not s or s == "[]":
return []
try:
parsed = ast.literal_eval(s)
if isinstance(parsed, (list, tuple, set)):
return [str(x).strip() for x in parsed if x is not None and str(x).strip()]
except Exception:
return [s]
return []
def _pick_categories(*vals):
for v in vals:
cats = _norm_categories(v)
if cats:
return cats
return []
def _first_url_from_list(v):
if isinstance(v, (list, tuple)):
for u in v:
if isinstance(u, str) and u.strip():
return u.strip()
return None
def _pick_image_url(cand_image_url, cand_highres, cand_image):
# priority: explicit image_url (string), then imageURLHighRes[0], then imageURL[0]
if isinstance(cand_image_url, str) and cand_image_url.strip():
return cand_image_url.strip()
u = _first_url_from_list(cand_highres)
if u:
return u
u = _first_url_from_list(cand_image)
if u:
return u
if isinstance(cand_image_url, list):
u = _first_url_from_list(cand_image_url)
if u:
return u
return None
def _pick_rank(*vals):
for v in vals:
if v is None or (isinstance(v, float) and not math.isfinite(v)):
continue
if isinstance(v, (int, float)):
return int(v)
if isinstance(v, str):
m = re.search(r"[\d,]+", v)
if m:
try:
return int(m.group(0).replace(",", ""))
except Exception:
pass
return None
def _lookup(iid: str, col: str):
for src in sources:
if iid in src.index and col in src.columns:
return src.at[iid, col]
return None
out = []
for r in recs:
iid = str(r.get("item_id", ""))
if not iid:
out.append(r); continue
title = _pick_non_empty(r.get("title"), _lookup(iid, "title"))
brand = _pick_non_empty(r.get("brand"), _lookup(iid, "brand"))
price = _pick_price(r.get("price"), _lookup(iid, "price"))
cats = _pick_categories(r.get("categories"), _lookup(iid, "categories"))
img = _pick_image_url(
_lookup(iid, "image_url"),
_lookup(iid, "imageURLHighRes"),
_lookup(iid, "imageURL"),
)
rank = _pick_rank(r.get("rank"), _lookup(iid, "rank_num"), _lookup(iid, "rank"))
if not cats and dataset.lower() == "beauty":
cats = ["Beauty & Personal Care"]
rr = {**r}
if title is not None: rr["title"] = title
if brand is not None: rr["brand"] = brand
rr["price"] = price
rr["categories"] = cats
rr["image_url"] = img
rr["rank"] = rank
out.append(rr)
return out
except Exception:
return recs
# =========================
# FastAPI app
# =========================
app = FastAPI(title="MMR-Agentic-CoVE API", version="1.0.5") # bumped
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # tighten for prod
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
from fastapi import HTTPException
def _discover_faiss_names_api(dataset: str) -> List[str]:
proc = get_processed_path(dataset)
idx_dir = proc / "index"
if not idx_dir.exists():
return []
names: List[str] = []
for p in sorted(idx_dir.glob("items_*.faiss")):
# only keep this dataset's indices: items_<dataset>_*.faiss
if not p.stem.startswith(f"items_{dataset}_"):
continue
# expose the name AFTER 'items_'
names.append(p.stem[len("items_"):]) # e.g. beauty_concat
return names
@app.get("/faiss")
def list_faiss(dataset: str = Query(..., description="Dataset name")):
try:
names = _discover_faiss_names_api(dataset)
return {"dataset": dataset, "indexes": names}
except Exception as e:
tb = traceback.format_exc(limit=2)
return JSONResponse(status_code=500, content={"detail": f"/faiss failed: {e}", "traceback": tb})
@app.get("/defaults")
def get_defaults(dataset: str = Query(..., description="Dataset name")):
"""
Return defaults.json contents (if present) so the UI can auto-fill
weights, k, and a suggested FAISS name.
"""
try:
proc = get_processed_path(dataset)
fp = proc / "index" / "defaults.json"
if not fp.exists():
return {"dataset": dataset, "defaults": {}}
try:
payload = json.loads(fp.read_text())
except Exception:
payload = {}
return {"dataset": dataset, "defaults": payload}
except Exception as e:
tb = traceback.format_exc(limit=2)
raise HTTPException(status_code=500, detail={"error": str(e), "traceback": tb})
# =========================
# Schemas
# =========================
class RecommendIn(BaseModel):
dataset: str
user_id: str
k: int = 10
fusion: str = Field(default="weighted", pattern="^(concat|weighted)$")
# If any of these are None, the service will fall back to defaults.json (or the internal fallback).
w_text: Optional[float] = None
w_image: Optional[float] = None
w_meta: Optional[float] = None
use_faiss: bool = False
faiss_name: Optional[str] = None
exclude_seen: bool = True
alpha: Optional[float] = None # legacy/no-op but accepted
# Optional passthrough for future CoVE handling (UI may send it; safe to ignore)
cove: Optional[str] = None # NEW (optional, ignored by service unless you wire it)
class ChatMessage(BaseModel):
role: str
content: str
class ChatIn(BaseModel):
messages: List[ChatMessage]
dataset: Optional[str] = None
user_id: Optional[str] = None
k: int = 5
use_faiss: bool = False
faiss_name: Optional[str] = None
# =========================
# JSON helpers
# =========================
def _np_default(o):
if isinstance(o, (np.integer,)):
return int(o)
if isinstance(o, (np.floating,)):
return float(o)
if isinstance(o, (np.ndarray,)):
return o.tolist()
return str(o)
# =========================
# Endpoints (info)
# =========================
@app.get("/users")
def list_users(dataset: str = Query(..., description="Dataset name, e.g., 'beauty'")):
"""
Return available user_ids (and optional display names if user_map.parquet exists).
"""
try:
proc = get_processed_path(dataset)
fp_ids = proc / "user_text_emb.parquet"
if not fp_ids.exists():
return JSONResponse(
status_code=400,
content={"detail": f"Unknown dataset '{dataset}' or missing '{fp_ids.name}' in {proc}."},
)
# Load ids
df_ids = pd.read_parquet(fp_ids, columns=["user_id"])
users = sorted(df_ids["user_id"].astype(str).unique().tolist())
# Optional names
names: Dict[str, str] = {}
try:
umap_fp = proc / "user_map.parquet"
if umap_fp.exists():
umap = pd.read_parquet(umap_fp)
if {"user_id", "user_name"} <= set(umap.columns):
umap["user_id"] = umap["user_id"].astype(str)
umap = umap.dropna(subset=["user_id"]).drop_duplicates("user_id")
names = dict(zip(umap["user_id"], umap["user_name"].fillna("").astype(str)))
except Exception:
names = {}
return {"dataset": dataset, "count": len(users), "users": users, "names": names}
except Exception as e:
tb = traceback.format_exc(limit=2)
return JSONResponse(status_code=500, content={"detail": f"/users failed: {e}", "traceback": tb})
@app.get("/agentz")
def agentz():
return _agent_introspection()
# api/app_api.py (Part 4/5)
@app.post("/recommend")
def make_recommend(body: RecommendIn):
"""
Core recommendation endpoint.
- Validates dataset files exist
- Optionally validates FAISS index if use_faiss=true
- Calls service.recommender.recommend_for_user
- Enriches with catalog info
- Normalizes JSON (numpy/pandas safe)
- NEW: adds 'metrics' block (hit@k, ndcg@k, memory_mb) if found
"""
try:
# --- Preflight dataset/file check (mirrors /users) ---
proc = get_processed_path(body.dataset)
user_fp = proc / "user_text_emb.parquet"
if not user_fp.exists():
return JSONResponse(
status_code=400,
content={"detail": f"Unknown dataset '{body.dataset}' or missing '{user_fp.name}' in {proc}."},
)
# --- Build service config ---
cfg = RecommendConfig(
dataset=body.dataset,
user_id=str(body.user_id),
k=int(body.k),
fusion=body.fusion,
weights=FusionWeights(text=body.w_text, image=body.w_image, meta=body.w_meta),
alpha=body.alpha, # legacy; ignored by service
use_faiss=body.use_faiss,
faiss_name=body.faiss_name,
exclude_seen=body.exclude_seen,
)
# --- Optional FAISS check (if explicit name given) ---
if cfg.use_faiss and cfg.faiss_name:
index_path = proc / "index" / f"items_{cfg.faiss_name}.faiss"
if not index_path.exists():
return JSONResponse(
status_code=400,
content={"detail": f"FAISS index not found: {index_path}. Build it or set use_faiss=false."},
)
# --- Call recommender service ---
out = recommend_for_user(cfg)
# Normalize list key
recs = out.get("results")
if recs is None:
recs = out.get("recommendations", [])
recs = list(recs or [])[: int(cfg.k)]
# Enrich & normalize
recs = _enrich_with_catalog(body.dataset, recs)
_normalize_categories_in_place(recs)
# Final coercions
for r in recs:
# rank
rn = r.get("rank_num")
if rn is not None:
try: r["rank"] = int(rn)
except Exception: r["rank"] = None
else:
rv = r.get("rank")
if isinstance(rv, str):
m = re.search(r"[\d,]+", rv); r["rank"] = int(m.group(0).replace(",", "")) if m else None
elif isinstance(rv, (int, float)):
try: r["rank"] = int(rv)
except Exception: r["rank"] = None
else:
r["rank"] = None
# price
v = r.get("price")
try:
rv = float(v) if v not in (None, "", "nan") else None
r["price"] = rv if (rv is None or math.isfinite(rv)) else None
except Exception:
r["price"] = None
# score
v = r.get("score")
try:
rv = float(v) if v not in (None, "", "nan") else None
r["score"] = rv if (rv is None or math.isfinite(rv)) else None
except Exception:
r["score"] = None
# image_url
v = r.get("image_url")
if isinstance(v, list):
r["image_url"] = next((u for u in v if isinstance(u, str) and u.strip()), None)
elif isinstance(v, str):
r["image_url"] = v.strip() or None
else:
r["image_url"] = None
# guard
cats = r.get("categories")
if isinstance(cats, list) and len(cats) == 1 and isinstance(cats[0], str) and cats[0].strip() == "[]":
r["categories"] = []
# Put normalized list back
out["results"] = _to_jsonable(recs)
out["recommendations"] = _to_jsonable(recs)
# ---------- NEW: attach metrics if we can find them ----------
try:
metrics = _latest_metrics_for(
dataset=body.dataset,
fusion=body.fusion,
k=int(body.k),
faiss_name=body.faiss_name,
)
if metrics:
out["metrics"] = metrics
except Exception:
# swallow β€” metrics are optional
pass
return JSONResponse(content=_to_jsonable(out))
except FileNotFoundError:
return JSONResponse(status_code=400, content={"detail": f"Dataset '{body.dataset}' not found or incomplete."})
except ValueError as e:
return JSONResponse(status_code=400, content={"detail": f"/recommend failed: {e}"})
except Exception as e:
tb = traceback.format_exc(limit=5)
return JSONResponse(status_code=500, content={"detail": f"/recommend failed: {e}", "traceback": tb})
# api/app_api.py (Part 5/5)
@app.post("/chat_recommend")
def chat_recommend(body: ChatIn):
# Tolerant parse of messages
msgs: List[Dict[str, str]] = []
for m in body.messages:
if isinstance(m, dict):
msgs.append({"role": m.get("role"), "content": m.get("content")})
else:
d = m.model_dump() if hasattr(m, "model_dump") else m.dict()
msgs.append({"role": d.get("role"), "content": d.get("content")})
try:
out: Dict[str, Any] = {"reply": "", "recommendations": []}
recs: List[Dict[str, Any]] = []
# 1) Ask the agent
if hasattr(CHAT_AGENT, "reply"):
candidate_kwargs = {
"messages": msgs,
"dataset": body.dataset,
"user_id": body.user_id,
"k": body.k,
"use_faiss": body.use_faiss,
"faiss_name": body.faiss_name,
}
sig = inspect.signature(CHAT_AGENT.reply)
allowed = set(sig.parameters.keys())
safe_kwargs = {k: v for k, v in candidate_kwargs.items() if k in allowed}
agent_out = CHAT_AGENT.reply(**safe_kwargs)
if isinstance(agent_out, dict):
out.update(agent_out)
recs = agent_out.get("recommendations") or []
else:
out["reply"] = str(agent_out) if agent_out is not None else ""
recs = [dict(r) if not isinstance(r, dict) else r for r in (recs or [])]
# 2) Fallback
if not recs:
cfg = RecommendConfig(
dataset=body.dataset or "beauty",
user_id=str(body.user_id or ""),
k=int(body.k or 5),
fusion="weighted",
weights=FusionWeights(text=1.0, image=0.2, meta=0.2),
alpha=None,
use_faiss=False,
faiss_name=None,
exclude_seen=True,
)
try:
reco_out = recommend_for_user(cfg)
recs = reco_out.get("results") or reco_out.get("recommendations") or []
recs = [dict(r) if not isinstance(r, dict) else r for r in recs]
if not out.get("reply"):
out["reply"] = "Here are some items you might like."
except Exception:
pass
# 3) Enrich + normalize (like /recommend)
ds = body.dataset or "beauty"
recs = _enrich_with_catalog(ds, recs)
_normalize_categories_in_place(recs)
for r in recs:
# price
v = r.get("price")
try:
rv = float(v) if v not in (None, "", "nan") else None
r["price"] = rv if (rv is None or math.isfinite(rv)) else None
except Exception:
r["price"] = None
# score
v = r.get("score")
try:
rv = float(v) if v not in (None, "", "nan") else None
r["score"] = rv if (rv is None or math.isfinite(rv)) else None
except Exception:
r["score"] = None
# rank
rn = r.get("rank_num")
if rn is not None:
try: r["rank"] = int(rn)
except Exception: r["rank"] = None
else:
rv = r.get("rank")
if isinstance(rv, str):
m = re.search(r"[\d,]+", rv); r["rank"] = int(m.group(0).replace(",", "")) if m else None
elif isinstance(rv, (int, float)):
try: r["rank"] = int(rv)
except Exception: r["rank"] = None
else:
r["rank"] = None
# image_url (string)
v = r.get("image_url")
if isinstance(v, list):
r["image_url"] = next((u for u in v if isinstance(u, str) and u.strip()), None)
elif isinstance(v, str):
r["image_url"] = v.strip() or None
else:
r["image_url"] = None
# 4) Lightweight chat constraints (budget/keyword) β€” unchanged
last = (msgs[-1]["content"] if msgs else "") or ""
cap = _parse_price_cap(last)
kw = _parse_keyword(last)
if cap is not None:
recs = [r for r in recs if (r.get("price") is not None and r["price"] <= cap)]
if kw:
lowkw = kw.lower()
def _matches(item: Dict[str, Any]) -> bool:
fields = [str(item.get("brand") or ""), str(item.get("item_id") or "")]
fields.extend(item.get("categories") or [])
return lowkw in " ".join(fields).lower()
filtered = [r for r in recs if _matches(r)]
if filtered:
recs = filtered
out["recommendations"] = recs
out["results"] = recs
# ---------- NEW: attach metrics (optional best-effort) ----------
try:
metrics = _latest_metrics_for(
dataset=ds,
fusion="weighted", # chat uses weighted defaults for now
k=int(body.k or 5),
faiss_name=body.faiss_name,
)
if metrics:
out["metrics"] = metrics
except Exception:
pass
return JSONResponse(content=_to_jsonable(out))
except Exception as e:
tb = traceback.format_exc(limit=5)
return JSONResponse(status_code=400, content={"detail": f"/chat_recommend failed: {e}", "traceback": tb})
# =========================
# Health & root
# =========================
@app.get("/healthz")
def healthz():
return {"ok": True, "service": "MMR-Agentic-CoVE API", "version": getattr(app, "version", None) or "unknown"}
@app.get("/")
def root():
return {"ok": True, "service": "MMR-Agentic-CoVE API"}