MusaedMusaedSadeqMusaedAl-Fareh225739 commited on
Commit
f995563
Β·
1 Parent(s): 2ca85a8

updated Readme file

Browse files
Files changed (1) hide show
  1. README.md +392 -11
README.md CHANGED
@@ -1,14 +1,395 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
- title: Mrrrme Emotion Ai
3
- emoji: 🌍
4
- colorFrom: indigo
5
- colorTo: purple
6
- sdk: docker
7
- pinned: false
8
- license: mit
9
- short_description: MrrrMe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
13
- "# Test by [friend name]"
14
- "# Test by [Michon]"
 
1
+ # MrrrMe - Privacy-First Smart Mirror for Multi-Modal Emotion Detection
2
+
3
+ **18-Week Specialization Project | Breda University of Applied Sciences**
4
+
5
+ A privacy-first smart mirror system that performs real-time multi-modal emotion recognition combining facial expressions, voice tonality, and text sentiment analysis with conversational AI capabilities.
6
+
7
+ ---
8
+
9
+ ## Project Overview
10
+
11
+ **Program**: AI & Data Science - Applied Data Science
12
+ **Institution**: Breda University of Applied Sciences, Netherlands
13
+ **Duration**: 18 weeks (February - June 2026)
14
+ **Current Status**: Week 7 of 18 (11 weeks remaining)
15
+
16
+ ### Problem Statement
17
+
18
+ Traditional emotion recognition systems suffer from single-modality limitations, high latency, privacy concerns, and inability to detect masked emotions. MrrrMe addresses these challenges with a comprehensive multi-modal approach.
19
+
20
+ ### Solution
21
+
22
+ A privacy-first, multi-modal emotion detection system that:
23
+ - Fuses facial expressions (40%), voice tonality (30%), and linguistic content (30%)
24
+ - Processes everything locally with no cloud dependencies
25
+ - Achieves sub-2-second response times
26
+ - Generates empathetic, context-aware conversational responses
27
+ - Integrates with customizable 3D avatars for natural interaction
28
+
29
+ ---
30
+
31
+ ## Key Features
32
+
33
+ ### Multi-Modal Emotion Fusion
34
+ - Weighted fusion algorithm combining three modalities
35
+ - 4-class emotion model: Neutral, Happy, Sad, Angry
36
+ - Confidence-based conflict resolution
37
+ - Event-driven processing for 600x efficiency improvement
38
+ - Quality-aware dynamic weight adjustment
39
+
40
+ ### Facial Expression Analysis
41
+ - Face detection using OpenCV Haar Cascade
42
+ - Emotion recognition using ViT-Face-Expression (FER2013 dataset)
43
+ - 70-75% baseline accuracy on facial expressions alone
44
+ - Real-time processing with quality scoring
45
+ - Efficient frame sampling (5% of frames processed)
46
+
47
+ ### Voice Emotion Recognition
48
+ - HuBERT-Large model for emotional prosody detection
49
+ - Voice Activity Detection with 72.4% processing efficiency
50
+ - Sub-50ms inference per audio chunk
51
+ - 76.8% accuracy on voice-only emotion detection
52
+ - Smart silence detection to reduce unnecessary processing
53
+
54
+ ### Natural Language Understanding
55
+ - Whisper (distil-large-v3) for accurate speech-to-text transcription
56
+ - DistilRoBERTa for contextual sentiment analysis
57
+ - Rule-based overrides for common phrases
58
+ - Conversation memory across sessions
59
+ - Multi-turn dialogue support
60
+
61
+ ### Conversational AI Integration
62
+ - Groq Cloud API with Llama 3.1 8B Instant model
63
+ - Dual personality modes: Empathetic Therapist and Action-Focused Coach
64
+ - Emotion-aware response generation
65
+ - 1-2 second LLM response times
66
+ - Configurable response styles: brief, balanced, detailed
67
+
68
+ ### Avatar System
69
+ - Customizable 3D avatars using Avaturn SDK
70
+ - Realistic lip-sync with Coqui XTTS v2 TTS engine
71
+ - 16 supported languages including English and Dutch
72
+ - Emotion-driven facial expressions
73
+ - Male and female voice options (Damien Black, Ana Florence)
74
+
75
+ ### Web-Based Interface
76
+ - Modern React/Next.js 16 frontend with TypeScript
77
+ - Real-time WebSocket communication
78
+ - Apple-inspired design system with light/dark mode
79
+ - Responsive layout for desktop and mobile
80
+ - Session-based authentication with SQLite backend
81
+
82
  ---
83
+
84
+ ## Technology Stack
85
+
86
+ ### Computer Vision & Face Analysis
87
+
88
+ | Component | Technology | Size | Inference Time | Purpose |
89
+ |-----------|-----------|------|----------------|---------|
90
+ | Face Detection | OpenCV Haar Cascade | <1 MB | <10ms | Detect and localize faces |
91
+ | Emotion Recognition | ViT-Face-Expression | ~90 MB | ~100ms | 7-class emotion classification |
92
+ | Emotion Mapping | FER2013 to 4-class | N/A | <1ms | Simplify to actionable emotions |
93
+
94
+ **Facial Emotion Classes**: Angry, Disgust, Fear, Happy, Sad, Surprise, Neutral
95
+ **Mapped to**: Neutral, Happy, Sad, Angry
96
+
97
+ ### Audio Processing & Voice Analysis
98
+
99
+ | Component | Technology | Size | Inference Time | Purpose |
100
+ |-----------|-----------|------|----------------|---------|
101
+ | Speech Transcription | Whisper (distil-large-v3) | ~140 MB | 0.37-1.04s | Audio to text conversion |
102
+ | Voice Emotion | HuBERT-Large | ~300 MB | ~50ms | Emotional prosody detection |
103
+ | Voice Activity Detection | Silero VAD | ~1 MB | <5ms | Speech segmentation |
104
+ | Audio I/O | SoundDevice | N/A | N/A | Real-time audio capture |
105
+
106
+ ### Natural Language Processing
107
+
108
+ | Component | Technology | Size | Inference Time | Purpose |
109
+ |-----------|-----------|------|----------------|---------|
110
+ | Sentiment Analysis | DistilRoBERTa | ~260 MB | ~100ms | Text emotion extraction |
111
+ | Conversational AI | Groq Cloud API (Llama 3.1 8B) | Cloud | 1-2s | Response generation |
112
+ | Text-to-Speech | Coqui XTTS v2 | ~2 GB | 2-4s | Avatar voice synthesis |
113
+
114
+ ### Frontend & Infrastructure
115
+
116
+ | Component | Technology | Purpose |
117
+ |-----------|-----------|---------|
118
+ | Frontend Framework | Next.js 16 (React 19) | Modern web interface |
119
+ | 3D Rendering | React Three Fiber + Three.js | Avatar visualization |
120
+ | Avatar SDK | Avaturn SDK | Custom avatar creation |
121
+ | Styling | Tailwind CSS v4 | Apple-inspired design system |
122
+ | API Framework | FastAPI | WebSocket + REST endpoints |
123
+ | Database | SQLite | User auth and session management |
124
+ | Deployment | Docker + Nginx | Production containerization |
125
+
126
+ ---
127
+
128
+ ## System Architecture
129
+
130
+ ```
131
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
132
+ β”‚ CLIENT (Web Browser) β”‚
133
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
134
+ β”‚ β”‚ Next.js 16 Frontend (React 19 + TypeScript) β”‚ β”‚
135
+ β”‚ β”‚ - Avatar visualization (Three.js) β”‚ β”‚
136
+ β”‚ β”‚ - Real-time emotion display β”‚ β”‚
137
+ β”‚ β”‚ - Conversation history UI β”‚ β”‚
138
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
139
+ β”‚ β”‚ WebSocket β”‚
140
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
141
+ β”‚
142
+ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
143
+ β”‚ β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β” β”‚
144
+ β”‚ β”‚Nginx Proxy β”‚ (Port 7860) β”‚
145
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β”‚
146
+ β”‚ β”‚ β”‚
147
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
148
+ β”‚ β–Ό β–Ό β–Ό β”‚
149
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
150
+ β”‚ β”‚ Next.js β”‚ β”‚FastAPI β”‚ β”‚ Avatar TTS β”‚ β”‚
151
+ β”‚ β”‚ :3001 β”‚ β”‚ :8000 β”‚ β”‚ :8765 β”‚ β”‚
152
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
153
+ β”‚ β”‚ β”‚
154
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β” β”‚
155
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β” β”‚
156
+ β”‚ β”‚ Emotion β”‚ β”‚ Session β”‚ β”‚
157
+ β”‚ β”‚ Pipeline β”‚ β”‚ Manager β”‚ β”‚
158
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
159
+ β”‚ β”‚ β”‚
160
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
161
+ β”‚ β–Ό β–Ό β–Ό β”‚
162
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β” β”‚
163
+ β”‚ β”‚ Face β”‚ β”‚Voice β”‚ β”‚ Text β”‚ β”‚
164
+ β”‚ β”‚ ViT β”‚ β”‚HuBERTβ”‚ β”‚RoBERTaβ”‚ β”‚
165
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”˜ β”‚
166
+ β”‚ β”‚ β”‚
167
+ β”‚ β–Ό β”‚
168
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
169
+ β”‚ β”‚ Fusion Engine β”‚ β”‚
170
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
171
+ β”‚ β–Ό β”‚
172
+ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚
173
+ β”‚ β”‚ Groq Cloud β”‚ β”‚
174
+ β”‚ β”‚ (Llama 3.1 8B) β”‚ β”‚
175
+ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚
176
+ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
177
+ ```
178
+
179
+ ---
180
+
181
+ ## Performance Metrics
182
+
183
+ ### Processing Latency
184
+
185
+ | Component | Latency | Notes |
186
+ |-----------|---------|-------|
187
+ | Face Detection | 8-15ms | OpenCV Haar Cascade |
188
+ | Facial Emotion | 80-120ms | ViT-Face-Expression |
189
+ | Voice Emotion | 40-60ms | HuBERT per 3s chunk |
190
+ | Whisper Transcription | 370ms - 1.04s | Length-dependent |
191
+ | Text Sentiment | 90-110ms | DistilRoBERTa |
192
+ | Fusion Calculation | <5ms | Weighted average |
193
+ | LLM Generation | 1-2s | Groq Cloud API |
194
+ | XTTS Synthesis | 2-4s | Coqui XTTS v2 |
195
+ | **Total Response Time** | **1.5-2.5s** | Target achieved |
196
+
197
+ ### Accuracy Metrics
198
+
199
+ | Modality | Accuracy | Dataset/Notes |
200
+ |----------|----------|---------------|
201
+ | Face Only | 70-75% | ViT on FER2013 |
202
+ | Voice Only | 76.8% | HuBERT on IEMOCAP |
203
+ | Text Only | 81.2% | DistilRoBERTa + rules |
204
+ | **Multi-Modal Fusion** | **85-88%** | Estimated combined accuracy |
205
+
206
+ ---
207
+
208
+ ## Installation
209
+
210
+ ### Prerequisites
211
+
212
+ - Python 3.11+
213
+ - Node.js 20+
214
+ - NVIDIA GPU with 4GB+ VRAM (recommended)
215
+ - CUDA 11.8+ (for GPU acceleration)
216
+ - Git LFS
217
+
218
+ ### Local Development
219
+
220
+ ```bash
221
+ # Clone repository
222
+ git clone https://github.com/YourUsername/MrrrMe.git
223
+ cd MrrrMe
224
+ git lfs install
225
+ git lfs pull
226
+
227
+ # Backend setup
228
+ python -m venv venv
229
+ source venv/bin/activate # or venv\Scripts\activate on Windows
230
+ pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
231
+ pip install -r requirements_docker.txt
232
+
233
+ # Create .env file
234
+ echo "GROQ_API_KEY=your_api_key_here" > .env
235
+
236
+ # Frontend setup
237
+ cd avatar-frontend
238
+ npm install
239
+ npm run build
240
+ cd ..
241
+
242
+ # Start services (3 terminals needed)
243
+ # Terminal 1:
244
+ cd avatar && python speak_server.py
245
+
246
+ # Terminal 2:
247
+ python mrrrme/backend_new.py
248
+
249
+ # Terminal 3:
250
+ cd avatar-frontend && npm run dev
251
+ ```
252
+
253
+ Access at `http://localhost:3000`
254
+
255
+ ### Docker Deployment
256
+
257
+ ```bash
258
+ # Build image
259
+ docker build -t mrrrme:latest .
260
+
261
+ # Run with GPU
262
+ docker run --gpus all -p 7860:7860 mrrrme:latest
263
+
264
+ # Run CPU only
265
+ docker run -p 7860:7860 mrrrme:latest
266
+ ```
267
+
268
+ ---
269
+
270
+ ## Project Structure
271
+
272
+ ```
273
+ MrrrMe/
274
+ β”œβ”€β”€ avatar-frontend/ # Next.js web application
275
+ β”‚ β”œβ”€β”€ app/ # Next.js app router
276
+ β”‚ β”œβ”€β”€ public/ # Static assets
277
+ β”‚ └── package.json
278
+ β”œβ”€β”€ mrrrme/ # Python backend
279
+ β”‚ β”œβ”€β”€ backend/ # Modular FastAPI backend
280
+ β”‚ β”‚ β”œβ”€β”€ auth/ # Authentication
281
+ β”‚ β”‚ β”œβ”€β”€ models/ # AI model loading
282
+ β”‚ β”‚ β”œβ”€β”€ processing/ # Core processing
283
+ β”‚ β”‚ └── session/ # Session management
284
+ β”‚ β”œβ”€β”€ audio/ # Audio processing
285
+ β”‚ β”œβ”€β”€ nlp/ # NLP modules
286
+ β”‚ β”œβ”€β”€ vision/ # Computer vision
287
+ β”‚ └── config.py # Global configuration
288
+ β”œβ”€β”€ avatar/ # Avatar TTS backend
289
+ β”œβ”€β”€ model/ # Neural network architectures
290
+ β”œβ”€β”€ weights/ # Model weights (LFS)
291
+ β”œβ”€β”€ Dockerfile # Container definition
292
+ └── requirements_docker.txt # Python dependencies
293
+ ```
294
+
295
+ See individual folder READMEs for detailed documentation of each component.
296
+
297
+ ---
298
+
299
+ ## Configuration
300
+
301
+ ### Emotion Fusion Weights
302
+
303
+ ```python
304
+ # mrrrme/config.py or mrrrme/backend/config.py
305
+ FUSION_WEIGHTS = {
306
+ 'face': 0.40, # Facial expressions
307
+ 'voice': 0.30, # Vocal prosody
308
+ 'text': 0.30 # Linguistic sentiment
309
+ }
310
+ ```
311
+
312
+ ### LLM Settings
313
+
314
+ ```python
315
+ LLM_RESPONSE_STYLE = "balanced" # Options: brief, balanced, detailed
316
+ PERSONALITY = "therapist" # Options: therapist, coach
317
+ ```
318
+
319
+ ### Supported Languages
320
+
321
+ Primary: English (en), Dutch (nl)
322
+ TTS Supported (16 total): en, nl, fr, de, it, es, ja, zh, pt, pl, tr, ru, cs, ar, hu, ko
323
+
324
+ ---
325
+
326
+ ## Development Timeline
327
+
328
+ ### Weeks 1-7 (Completed)
329
+ - Multi-modal emotion detection pipeline
330
+ - Web frontend with 3D avatar system
331
+ - Real-time WebSocket communication
332
+ - User authentication and session management
333
+ - Groq API and XTTS v2 integration
334
+
335
+ ### Weeks 8-18 (Planned)
336
+ - **8-9**: Testing, optimization, bug fixes
337
+ - **10-12**: Avatar enhancement and animation refinement
338
+ - **13-15**: UI/UX improvements and feature expansion
339
+ - **16**: Extended memory and context management
340
+ - **17**: User testing and feedback integration
341
+ - **18**: Demo preparation and final documentation
342
+
343
+ ---
344
+
345
+ ## API Reference
346
+
347
+ ### WebSocket Events
348
+
349
+ **Client to Server**:
350
+ - `auth`: Session authentication
351
+ - `video_frame`: Base64 encoded video frame
352
+ - `audio_chunk`: Base64 encoded audio data
353
+ - `speech_end`: Transcribed speech text
354
+ - `preferences`: Voice, language, personality settings
355
+
356
+ **Server to Client**:
357
+ - `face_emotion`: Detected facial emotion with probabilities
358
+ - `voice_emotion`: Detected voice emotion
359
+ - `llm_response`: AI-generated response with audio and visemes
360
+
361
+ ---
362
+
363
+ ## Team
364
+
365
+ **Musaed Al-Fareh** - AI & Data Science Student
366
+ Email: 225739@buas.nl
367
+ LinkedIn: [linkedin.com/in/musaed-alfareh-a365521b9](https://www.linkedin.com/in/musaed-alfareh-a365521b9/)
368
+
369
+ **Michon Goddijn** - AI & Data Science Student
370
+ Email: 231849@buas.nl
371
+
372
+ **Lorena Kraljić** - Tourism Student
373
+ Email: 226142@buas.nl
374
+
375
+ ---
376
+
377
+ ## License
378
+
379
+ MIT License
380
+
381
+ Component licenses: ViT-Face-Expression (MIT), Whisper (MIT), HuBERT (MIT), Llama 3.1 (Llama 2 Community License), Coqui XTTS v2 (MPL 2.0)
382
+
383
+ ---
384
+
385
+ ## Contact
386
+
387
+ **Repository**: [GitHub - MrrrMe](https://github.com/YourUsername/MrrrMe)
388
+ **Live Demo**: [Hugging Face Spaces](https://huggingface.co/spaces/michon/mrrrme-emotion-ai)
389
+ **Email**: 225739@buas.nl
390
+
391
  ---
392
 
393
+ **Last Updated**: December 9, 2024
394
+ **Version**: 2.0.0
395
+ **Status**: Active Development (Week 7/18)