michellelychan's picture
gradio app
f7f6e43
raw
history blame
1.32 kB
import gradio as gr
from transformers import BarkModel, AutoProcessor
import torch
from scipy.io.wavfile import write as write_wav
import os
### if you run on GPU use the following code: ###
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device)
# model.enable_cpu_offload()
### if you run on CPU use the following code: ###
device = "cpu"
# load in fp16
model = BarkModel.from_pretrained("suno/bark-small").to(device)
processor = AutoProcessor.from_pretrained("suno/bark")
voice_preset = "v2/en_speaker_3"
def generate_audio(text, preset, output_file_name="bark_generation"):
file_name = output_file_name + ".wav"
inputs = processor(text, voice_preset=preset)
audio_array = model.generate(**inputs)
audio_array = audio_array.cpu().numpy().squeeze()
sample_rate = model.generation_config.sample_rate
write_wav(file_name, sample_rate, audio_array)
return file_name
#Bark Presets List
presets = ["v2/en_speaker_0","v2/en_speaker_1", "v2/en_speaker_2", "v2/en_speaker_3", "v2/en_speaker_4", "v2/en_speaker_5", "v2/en_speaker_6"]
#Gradio Interface
iface = gr.Interface(fn=generate_audio, inputs=["text", gr.components.Dropdown(choices=presets), "text"], outputs="audio")
iface.launch()