Spaces:
Sleeping
Sleeping
Create app
Browse filesadding file
app
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def create_sota_plot():
|
| 8 |
+
# State-of-the-art models data
|
| 9 |
+
sota_models = {
|
| 10 |
+
'SIFT + FVs': (2012, 53),
|
| 11 |
+
'AlexNet': (2012.5, 65),
|
| 12 |
+
'SPPNet': (2014.5, 74),
|
| 13 |
+
'Inception V3': (2015.5, 81),
|
| 14 |
+
'NASNET-A(6)': (2017, 82.7),
|
| 15 |
+
'CoAtNet-7': (2021.5, 90.88),
|
| 16 |
+
'': (2022, 87.79), # Last point
|
| 17 |
+
'': (2022.2, 87.73) # Final value shown
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
# Extract data for SOTA models
|
| 21 |
+
sota_years = [year for year, _ in sota_models.values() if year != '']
|
| 22 |
+
sota_accuracy = [acc for _, acc in sota_models.values() if acc != '']
|
| 23 |
+
sota_labels = [name for name in sota_models.keys() if name != '']
|
| 24 |
+
|
| 25 |
+
# Generate synthetic "other models" data (gray points)
|
| 26 |
+
np.random.seed(42)
|
| 27 |
+
n_other = 300
|
| 28 |
+
other_years = np.random.uniform(2010, 2023, n_other)
|
| 29 |
+
# Create a distribution that's mostly below SOTA but with some variance
|
| 30 |
+
other_accuracy = []
|
| 31 |
+
for year in other_years:
|
| 32 |
+
# Find approximate SOTA accuracy for this year
|
| 33 |
+
sota_at_year = np.interp(year, sota_years[:len(sota_accuracy)], sota_accuracy[:len(sota_accuracy)])
|
| 34 |
+
# Add models mostly below SOTA with some variance
|
| 35 |
+
if year < 2012:
|
| 36 |
+
acc = np.random.normal(45, 8)
|
| 37 |
+
else:
|
| 38 |
+
acc = np.random.normal(sota_at_year - 10, 5)
|
| 39 |
+
# Some models can be close to SOTA
|
| 40 |
+
if np.random.random() < 0.1:
|
| 41 |
+
acc = sota_at_year - np.random.uniform(0, 3)
|
| 42 |
+
other_accuracy.append(max(30, min(92, acc))) # Clip to reasonable range
|
| 43 |
+
|
| 44 |
+
# Create the plot
|
| 45 |
+
fig = go.Figure()
|
| 46 |
+
|
| 47 |
+
# Add other models (gray scatter points)
|
| 48 |
+
fig.add_trace(go.Scatter(
|
| 49 |
+
x=other_years,
|
| 50 |
+
y=other_accuracy,
|
| 51 |
+
mode='markers',
|
| 52 |
+
name='Other models',
|
| 53 |
+
marker=dict(
|
| 54 |
+
color='lightgray',
|
| 55 |
+
size=6,
|
| 56 |
+
opacity=0.5
|
| 57 |
+
),
|
| 58 |
+
hovertemplate='Year: %{x:.1f}<br>Accuracy: %{y:.1f}%<extra></extra>'
|
| 59 |
+
))
|
| 60 |
+
|
| 61 |
+
# Add SOTA models line
|
| 62 |
+
fig.add_trace(go.Scatter(
|
| 63 |
+
x=sota_years[:len(sota_accuracy)],
|
| 64 |
+
y=sota_accuracy,
|
| 65 |
+
mode='lines+markers',
|
| 66 |
+
name='State-of-the-art models',
|
| 67 |
+
line=dict(color='#00CED1', width=3),
|
| 68 |
+
marker=dict(size=10, color='#00CED1'),
|
| 69 |
+
hovertemplate='%{text}<br>Year: %{x:.1f}<br>Accuracy: %{y:.1f}%<extra></extra>',
|
| 70 |
+
text=sota_labels[:len(sota_accuracy)]
|
| 71 |
+
))
|
| 72 |
+
|
| 73 |
+
# Add labels for SOTA models
|
| 74 |
+
for i, (name, (year, acc)) in enumerate(sota_models.items()):
|
| 75 |
+
if name and i < len(sota_accuracy): # Only label points with names
|
| 76 |
+
fig.add_annotation(
|
| 77 |
+
x=year,
|
| 78 |
+
y=acc,
|
| 79 |
+
text=name,
|
| 80 |
+
showarrow=False,
|
| 81 |
+
yshift=15,
|
| 82 |
+
font=dict(size=12)
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Add the final accuracy values
|
| 86 |
+
fig.add_annotation(
|
| 87 |
+
x=2022,
|
| 88 |
+
y=87.79,
|
| 89 |
+
text="87.79",
|
| 90 |
+
showarrow=False,
|
| 91 |
+
xshift=30,
|
| 92 |
+
font=dict(size=12, weight='bold')
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
fig.add_annotation(
|
| 96 |
+
x=2022.2,
|
| 97 |
+
y=87.73,
|
| 98 |
+
text="87.73",
|
| 99 |
+
showarrow=False,
|
| 100 |
+
xshift=30,
|
| 101 |
+
yshift=-10,
|
| 102 |
+
font=dict(size=12)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Update layout
|
| 106 |
+
fig.update_layout(
|
| 107 |
+
title='Evolution of Model Performance on ImageNet',
|
| 108 |
+
xaxis_title='Year',
|
| 109 |
+
yaxis_title='TOP-1 ACCURACY',
|
| 110 |
+
xaxis=dict(
|
| 111 |
+
range=[2010, 2023],
|
| 112 |
+
tickmode='linear',
|
| 113 |
+
tick0=2012,
|
| 114 |
+
dtick=2,
|
| 115 |
+
showgrid=True,
|
| 116 |
+
gridcolor='lightgray'
|
| 117 |
+
),
|
| 118 |
+
yaxis=dict(
|
| 119 |
+
range=[35, 100],
|
| 120 |
+
tickmode='linear',
|
| 121 |
+
tick0=40,
|
| 122 |
+
dtick=10,
|
| 123 |
+
showgrid=True,
|
| 124 |
+
gridcolor='lightgray'
|
| 125 |
+
),
|
| 126 |
+
plot_bgcolor='white',
|
| 127 |
+
paper_bgcolor='white',
|
| 128 |
+
height=500,
|
| 129 |
+
legend=dict(
|
| 130 |
+
yanchor="bottom",
|
| 131 |
+
y=0.01,
|
| 132 |
+
xanchor="center",
|
| 133 |
+
x=0.5,
|
| 134 |
+
orientation="h"
|
| 135 |
+
)
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return fig
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
# Create Gradio interface
|
| 142 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 143 |
+
gr.Markdown("# State-of-the-Art Models Timeline")
|
| 144 |
+
gr.Markdown(
|
| 145 |
+
"This visualization shows the evolution of state-of-the-art models' performance over time, similar to the ImageNet benchmark progression.")
|
| 146 |
+
|
| 147 |
+
plot = gr.Plot(label="Model Performance Evolution")
|
| 148 |
+
|
| 149 |
+
# Create plot on load
|
| 150 |
+
demo.load(fn=create_sota_plot, outputs=plot)
|
| 151 |
+
|
| 152 |
+
# Add interactive controls
|
| 153 |
+
with gr.Row():
|
| 154 |
+
refresh_btn = gr.Button("Refresh Plot")
|
| 155 |
+
|
| 156 |
+
refresh_btn.click(fn=create_sota_plot, outputs=plot)
|
| 157 |
+
|
| 158 |
+
gr.Markdown("""
|
| 159 |
+
### About this visualization:
|
| 160 |
+
- **Cyan line**: State-of-the-art models showing the progression of best performance
|
| 161 |
+
- **Gray dots**: Other models representing the broader research landscape
|
| 162 |
+
- The plot shows how breakthrough models like AlexNet, Inception, and NASNET pushed the boundaries
|
| 163 |
+
- Notice the rapid improvement from 2012-2018, followed by more incremental gains
|
| 164 |
+
""")
|
| 165 |
+
|
| 166 |
+
if __name__ == "__main__":
|
| 167 |
+
demo.launch()
|