Spaces:
Sleeping
Sleeping
# models/cnn_model.py | |
import torch.nn as nn | |
class MonkeyCNN(nn.Module): | |
def __init__(self, num_classes): | |
super(MonkeyCNN, self).__init__() | |
self.net = nn.Sequential( | |
# Conv Block 1 | |
nn.Conv2d(3, 32, kernel_size=3, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
# Conv Block 2 | |
nn.Conv2d(32, 64, kernel_size=3, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
# Conv Block 3 | |
nn.Conv2d(64, 128, kernel_size=3, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.MaxPool2d(2), | |
# Conv Block 4 (Optional: add more depth) | |
nn.Conv2d(128, 256, kernel_size=3, padding=1), | |
nn.BatchNorm2d(256), | |
nn.ReLU(), | |
nn.AdaptiveAvgPool2d((1, 1)), # Output size: [B, 256, 1, 1] | |
nn.Flatten(), | |
nn.Dropout(0.3), | |
nn.Linear(256, num_classes) | |
) | |
def forward(self, x): | |
return self.net(x) | |