Spaces:
Runtime error
Runtime error
justinpinkney
commited on
Commit
·
3b80337
1
Parent(s):
8881aeb
init commit
Browse files- app.py +210 -0
- requirements.txt +26 -0
app.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from einops import rearrange
|
6 |
+
from torch import autocast
|
7 |
+
from contextlib import nullcontext
|
8 |
+
import requests
|
9 |
+
import functools
|
10 |
+
|
11 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
12 |
+
from ldm.models.diffusion.plms import PLMSSampler
|
13 |
+
from ldm.extras import load_model_from_config, load_training_dir
|
14 |
+
import clip
|
15 |
+
|
16 |
+
from PIL import Image
|
17 |
+
|
18 |
+
from huggingface_hub import hf_hub_download
|
19 |
+
ckpt = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-pruned.ckpt")
|
20 |
+
config = hf_hub_download(repo_id="lambdalabs/image-mixer", filename="image-mixer-config.yaml")
|
21 |
+
|
22 |
+
device = "cuda:0"
|
23 |
+
model = load_model_from_config(config, ckpt, device=device, verbose=False)
|
24 |
+
model = model.to(device).half()
|
25 |
+
|
26 |
+
clip_model, preprocess = clip.load("ViT-L/14", device=device)
|
27 |
+
|
28 |
+
n_inputs = 5
|
29 |
+
|
30 |
+
@functools.lru_cache()
|
31 |
+
def get_url_im(t):
|
32 |
+
user_agent = {'User-agent': 'gradio-app'}
|
33 |
+
response = requests.get(t, headers=user_agent)
|
34 |
+
return Image.open(BytesIO(response.content))
|
35 |
+
|
36 |
+
@torch.no_grad()
|
37 |
+
def get_im_c(im_path, clip_model):
|
38 |
+
# im = Image.open(im_path).convert("RGB")
|
39 |
+
prompts = preprocess(im_path).to(device).unsqueeze(0)
|
40 |
+
return clip_model.encode_image(prompts).float()
|
41 |
+
|
42 |
+
@torch.no_grad()
|
43 |
+
def get_txt_c(txt, clip_model):
|
44 |
+
text = clip.tokenize([txt,]).to(device)
|
45 |
+
return clip_model.encode_text(text)
|
46 |
+
|
47 |
+
def get_txt_diff(txt1, txt2, clip_model):
|
48 |
+
return get_txt_c(txt1, clip_model) - get_txt_c(txt2, clip_model)
|
49 |
+
|
50 |
+
def to_im_list(x_samples_ddim):
|
51 |
+
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
52 |
+
ims = []
|
53 |
+
for x_sample in x_samples_ddim:
|
54 |
+
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
55 |
+
ims.append(Image.fromarray(x_sample.astype(np.uint8)))
|
56 |
+
return ims
|
57 |
+
|
58 |
+
@torch.no_grad()
|
59 |
+
def sample(sampler, model, c, uc, scale, start_code, h=512, w=512, precision="autocast",ddim_steps=50):
|
60 |
+
ddim_eta=0.0
|
61 |
+
precision_scope = autocast if precision=="autocast" else nullcontext
|
62 |
+
with precision_scope("cuda"):
|
63 |
+
shape = [4, h // 8, w // 8]
|
64 |
+
samples_ddim, _ = sampler.sample(S=ddim_steps,
|
65 |
+
conditioning=c,
|
66 |
+
batch_size=c.shape[0],
|
67 |
+
shape=shape,
|
68 |
+
verbose=False,
|
69 |
+
unconditional_guidance_scale=scale,
|
70 |
+
unconditional_conditioning=uc,
|
71 |
+
eta=ddim_eta,
|
72 |
+
x_T=start_code)
|
73 |
+
|
74 |
+
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
75 |
+
return to_im_list(x_samples_ddim)
|
76 |
+
|
77 |
+
def run(*args):
|
78 |
+
|
79 |
+
inps = []
|
80 |
+
for i in range(0, len(args)-4, n_inputs):
|
81 |
+
inps.append(args[i:i+n_inputs])
|
82 |
+
|
83 |
+
scale, n_samples, seed, steps = args[-4:]
|
84 |
+
h = w = 640
|
85 |
+
|
86 |
+
sampler = DDIMSampler(model)
|
87 |
+
# sampler = PLMSSampler(model)
|
88 |
+
|
89 |
+
torch.manual_seed(seed)
|
90 |
+
start_code = torch.randn(n_samples, 4, h//8, w//8, device=device)
|
91 |
+
conds = []
|
92 |
+
|
93 |
+
for b, t, im, s in zip(*inps):
|
94 |
+
if b == "Image":
|
95 |
+
this_cond = s*get_im_c(im, clip_model)
|
96 |
+
elif b == "Text/URL":
|
97 |
+
if t.startswith("http"):
|
98 |
+
im = get_url_im(t)
|
99 |
+
this_cond = s*get_im_c(im, clip_model)
|
100 |
+
else:
|
101 |
+
this_cond = s*get_txt_c(t, clip_model)
|
102 |
+
else:
|
103 |
+
this_cond = torch.zeros((1, 768), device=device)
|
104 |
+
conds.append(this_cond)
|
105 |
+
conds = torch.cat(conds, dim=0).unsqueeze(0)
|
106 |
+
conds = conds.tile(n_samples, 1, 1)
|
107 |
+
|
108 |
+
ims = sample(sampler, model, conds, 0*conds, scale, start_code, ddim_steps=steps)
|
109 |
+
# return make_row(ims)
|
110 |
+
return ims
|
111 |
+
|
112 |
+
|
113 |
+
import gradio as gr
|
114 |
+
from functools import partial
|
115 |
+
from itertools import chain
|
116 |
+
|
117 |
+
def change_visible(txt1, im1, val):
|
118 |
+
outputs = {}
|
119 |
+
if val == "Image":
|
120 |
+
outputs[im1] = gr.update(visible=True)
|
121 |
+
outputs[txt1] = gr.update(visible=False)
|
122 |
+
elif val == "Text/URL":
|
123 |
+
outputs[im1] = gr.update(visible=False)
|
124 |
+
outputs[txt1] = gr.update(visible=True)
|
125 |
+
elif val == "Nothing":
|
126 |
+
outputs[im1] = gr.update(visible=False)
|
127 |
+
outputs[txt1] = gr.update(visible=False)
|
128 |
+
return outputs
|
129 |
+
|
130 |
+
|
131 |
+
with gr.Blocks(title="Image Mixer") as demo:
|
132 |
+
|
133 |
+
gr.Markdown("")
|
134 |
+
gr.Markdown(
|
135 |
+
"""
|
136 |
+
# Image Mixer
|
137 |
+
|
138 |
+
_Created by [Justin Pinkney](https://www.justinpinkney.com) at [Lambda Labs](https://lambdalabs.com/)_
|
139 |
+
|
140 |
+
### __Provide one or more images to be mixed together by a fine-tuned Stable Diffusion model.__
|
141 |
+
|
142 |
+
![banner-large.jpeg](https://s3.amazonaws.com/moonup/production/uploads/1673968679262-62bd5f951e22ec84279820e8.jpeg)
|
143 |
+
|
144 |
+
""")
|
145 |
+
|
146 |
+
btns = []
|
147 |
+
txts = []
|
148 |
+
ims = []
|
149 |
+
strengths = []
|
150 |
+
|
151 |
+
with gr.Row():
|
152 |
+
for i in range(n_inputs):
|
153 |
+
with gr.Column():
|
154 |
+
btn1 = gr.Radio(
|
155 |
+
choices=["Image", "Text/URL", "Nothing"],
|
156 |
+
label=f"Input {i} type",
|
157 |
+
interactive=True,
|
158 |
+
value="Nothing",
|
159 |
+
)
|
160 |
+
txt1 = gr.Textbox(label="Text or Image URL", visible=False, interactive=True)
|
161 |
+
im1 = gr.Image(label="Image", interactive=True, visible=False, type="pil")
|
162 |
+
strength = gr.Slider(label="Strength", minimum=0, maximum=5, step=0.05, value=1, interactive=True)
|
163 |
+
|
164 |
+
fn = partial(change_visible, txt1, im1)
|
165 |
+
btn1.change(fn=fn, inputs=[btn1], outputs=[txt1, im1])
|
166 |
+
|
167 |
+
btns.append(btn1)
|
168 |
+
txts.append(txt1)
|
169 |
+
ims.append(im1)
|
170 |
+
strengths.append(strength)
|
171 |
+
with gr.Row():
|
172 |
+
cfg_scale = gr.Slider(label="CFG scale", value=3, minimum=1, maximum=10, step=0.5)
|
173 |
+
n_samples = gr.Slider(label="Num samples", value=2, minimum=1, maximum=4, step=1)
|
174 |
+
seed = gr.Slider(label="Seed", value=0, minimum=0, maximum=10000, step=1)
|
175 |
+
steps = gr.Slider(label="Steps", value=30, minimum=10, maximum=100, step=5)
|
176 |
+
|
177 |
+
with gr.Row():
|
178 |
+
submit = gr.Button("Generate")
|
179 |
+
output = gr.Gallery().style(grid=[1,2,2,2,4,4], height="640px")
|
180 |
+
|
181 |
+
inps = list(chain(btns, txts, ims, strengths))
|
182 |
+
inps.extend([cfg_scale,n_samples,seed, steps,])
|
183 |
+
submit.click(fn=run, inputs=inps, outputs=[output])
|
184 |
+
|
185 |
+
gr.Markdown(
|
186 |
+
"""
|
187 |
+
|
188 |
+
## Tips
|
189 |
+
|
190 |
+
- You can provide between 1 and 5 inputs, these can either be an uploaded image a text prompt or a url to an image file.
|
191 |
+
- The order of the inputs shouldn't matter, any images will be centre cropped before use.
|
192 |
+
- Each input has an individual strength parameter which controls how big an influence it has on the output.
|
193 |
+
- Using only text prompts doesn't work well, make sure there is at least one image or URL to an image.
|
194 |
+
- The parameters on the bottom row such as cfg scale do the same as for a normal Stable Diffusion model.
|
195 |
+
- Balancing the different inputs requires tweaking of the strengths, I suggest getting the right balance for a small number of samples and with few steps until you're
|
196 |
+
happy with the result then increase the steps for better quality.
|
197 |
+
- Outputs are 640x640 by default.
|
198 |
+
|
199 |
+
## How does this work?
|
200 |
+
|
201 |
+
This model is based on the [Stable Diffusion Image Variations model](https://huggingface.co/lambdalabs/sd-image-variations-diffusers)
|
202 |
+
but it has been fined tuned to take multiple CLIP image embeddings. During training, up to 5 random crops were taken from the training images and
|
203 |
+
the CLIP image embeddings were computed, these were then concatenated and used as the conditioning for the model. At inference time we can combine the image
|
204 |
+
embeddings from multiple images to mix their concepts (and we can also use the text encoder to add text concepts too).
|
205 |
+
|
206 |
+
The model was trained on a subset of LAION Improved Aesthetics at a resolution of 640x640 and was trained using 8xA100 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud).
|
207 |
+
|
208 |
+
""")
|
209 |
+
|
210 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch==1.12.1
|
3 |
+
torchvision==0.13.1
|
4 |
+
albumentations==0.4.3
|
5 |
+
opencv-python==4.5.5.64
|
6 |
+
pudb==2019.2
|
7 |
+
imageio==2.9.0
|
8 |
+
imageio-ffmpeg==0.4.2
|
9 |
+
pytorch-lightning==1.4.2
|
10 |
+
omegaconf==2.1.1
|
11 |
+
test-tube>=0.7.5
|
12 |
+
streamlit>=0.73.1
|
13 |
+
einops==0.3.0
|
14 |
+
torch-fidelity==0.3.0
|
15 |
+
transformers==4.22.2
|
16 |
+
kornia==0.6
|
17 |
+
webdataset==0.2.5
|
18 |
+
torchmetrics==0.6.0
|
19 |
+
fire==0.4.0
|
20 |
+
gradio==3.1.4
|
21 |
+
diffusers==0.3.0
|
22 |
+
datasets[vision]==2.4.0
|
23 |
+
-e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
24 |
+
-e git+https://github.com/openai/CLIP.git@main#egg=clip
|
25 |
+
-e git+https://github.com/justinpinkney/nomi.git@e9ded23b7e2269cc64d39683e1bf3c0319f552ab#egg=nomi
|
26 |
+
-e .
|