Spaces:
Running
Running
from typing import Any | |
def get_pipeline(): | |
import torch | |
from diffusers import AutoencoderTiny, AutoPipelineForImage2Image | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 | |
pipe = AutoPipelineForImage2Image.from_pretrained( | |
"SimianLuo/LCM_Dreamshaper_v7", | |
use_safetensors=True, | |
) | |
pipe.vae = AutoencoderTiny.from_pretrained( | |
"madebyollin/taesd", | |
torch_dtype=torch_dtype, | |
use_safetensors=True, | |
) | |
pipe = pipe.to(device, dtype=torch_dtype) | |
pipe.unet.to(memory_format=torch.channels_last) | |
return pipe | |
def get_test_pipeline(): | |
from PIL import Image | |
from dataclasses import dataclass | |
import random | |
import time | |
class Images: | |
images: list[Image.Image] | |
class Pipeline: | |
def __call__(self, *args: Any, **kwds: Any) -> Any: | |
r = random.randint(0, 255) | |
g = random.randint(0, 255) | |
b = random.randint(0, 255) | |
return Images(images=[Image.new("RGB", (512, 512), color=(r, g, b))]) | |
return Pipeline() | |