Spaces:
Running
Running
# https://medium.com/@qacheampong/building-and-deploying-a-fastapi-app-with-hugging-face-9210e9b4a713 | |
# https://huggingface.co/spaces/Queensly/FastAPI_in_Docker | |
from fastapi import FastAPI,Request | |
import uvicorn | |
import json | |
from PIL import Image | |
import time | |
from constants import DESCRIPTION, LOGO | |
from model import get_pipeline | |
from utils import replace_background | |
from diffusers.utils import load_image | |
import base64 | |
import io | |
app = FastAPI() | |
pipeline = get_pipeline() | |
#Endpoints | |
#Root endpoints | |
def root(): | |
return {"API": "Sum of 2 Squares"} | |
async def predict(prompt=Body(...),imgbase64data=Body(...)): | |
MAX_QUEUE_SIZE = 4 | |
start = time.time() | |
print("参数",imgbase64data,prompt) | |
image_data = base64.b64decode(imgbase64data) | |
image1 = Image.open(io.BytesIO(image_data)) | |
w, h = image1.size | |
newW = 512 | |
newH = int(h * newW / w) | |
img = image1.resize((newW, newH)) | |
end1 = time.time() | |
print("图像:", img.size) | |
print("加载管道:", end1 - start) | |
result = pipeline( | |
prompt=prompt, | |
image=img, | |
strength=0.6, | |
seed=10, | |
width=256, | |
height=256, | |
guidance_scale=1, | |
num_inference_steps=4, | |
) | |
output_image = result.images[0] | |
end2 = time.time() | |
print("测试",output_image) | |
print("s生成完成:", end2 - end1) | |
# 将图片对象转换为bytes | |
output_image_base64 = base64.b64encode(output_image.tobytes()).decode() | |
return output_image_base64 | |
async def predict(prompt=Body(...)): | |
return f"您好,{prompt}" | |