Michael Yang
		
	commited on
		
		
					Commit 
							
							·
						
						7134722
	
1
								Parent(s):
							
							0305ee7
								
b64 support:
Browse files- app.py +34 -13
- generation.py +7 -1
    	
        app.py
    CHANGED
    
    | @@ -10,6 +10,11 @@ from baseline import run as run_baseline | |
| 10 | 
             
            import torch
         | 
| 11 | 
             
            from shared import DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
         | 
| 12 | 
             
            from examples import stage1_examples, stage2_examples
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 13 |  | 
| 14 | 
             
            print(f"Is CUDA available: {torch.cuda.is_available()}")
         | 
| 15 | 
             
            if torch.cuda.is_available():
         | 
| @@ -61,6 +66,9 @@ layout_placeholder = """Caption: A realistic photo of a gray cat and an orange d | |
| 61 | 
             
            Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
         | 
| 62 | 
             
            Background prompt: A realistic photo of a grassy area."""
         | 
| 63 |  | 
|  | |
|  | |
|  | |
| 64 | 
             
            def get_lmd_prompt(prompt, template=default_template):
         | 
| 65 | 
             
                if prompt == "":
         | 
| 66 | 
             
                    prompt = prompt_placeholder
         | 
| @@ -69,6 +77,7 @@ def get_lmd_prompt(prompt, template=default_template): | |
| 69 | 
             
                return simplified_prompt.format(template=template, prompt=prompt)
         | 
| 70 |  | 
| 71 | 
             
            def get_layout_image(response):
         | 
|  | |
| 72 | 
             
                if response == "":
         | 
| 73 | 
             
                    response = layout_placeholder
         | 
| 74 | 
             
                gen_boxes, bg_prompt = parse_input(response)
         | 
| @@ -82,13 +91,19 @@ def get_layout_image(response): | |
| 82 | 
             
                # Now we can save it to a numpy array.
         | 
| 83 | 
             
                data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
         | 
| 84 | 
             
                data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 85 | 
             
                plt.clf()
         | 
| 86 | 
            -
                return data
         | 
| 87 |  | 
| 88 | 
             
            def get_layout_image_gallery(response):
         | 
| 89 | 
            -
                return  | 
| 90 |  | 
| 91 | 
             
            def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
         | 
|  | |
| 92 | 
             
                if response == "":
         | 
| 93 | 
             
                    response = layout_placeholder
         | 
| 94 | 
             
                gen_boxes, bg_prompt = parse_input(response)
         | 
| @@ -105,15 +120,20 @@ def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_s | |
| 105 | 
             
                else:
         | 
| 106 | 
             
                    scheduler_key = "scheduler"
         | 
| 107 |  | 
| 108 | 
            -
                image_np, so_img_list = run_ours(
         | 
| 109 | 
             
                    spec, bg_seed=seed, overall_prompt_override=overall_prompt_override, fg_seed_start=fg_seed_start, 
         | 
| 110 | 
             
                    fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio, use_autocast=use_autocast,
         | 
| 111 | 
             
                    gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key,
         | 
| 112 | 
             
                    so_negative_prompt=so_negative_prompt, overall_negative_prompt=overall_negative_prompt, so_batch_size=2
         | 
| 113 | 
             
                )
         | 
| 114 | 
            -
                 | 
| 115 | 
            -
                 | 
| 116 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 117 | 
             
                return images
         | 
| 118 |  | 
| 119 | 
             
            def get_baseline_image(prompt, seed=0):
         | 
| @@ -230,7 +250,7 @@ with gr.Blocks( | |
| 230 | 
             
                        inputs=[prompt],
         | 
| 231 | 
             
                        outputs=[output],
         | 
| 232 | 
             
                        fn=get_lmd_prompt,
         | 
| 233 | 
            -
                        cache_examples=True
         | 
| 234 | 
             
                    )
         | 
| 235 |  | 
| 236 | 
             
                with gr.Tab("Stage 2 (New). Layout to Image generation"):
         | 
| @@ -254,18 +274,19 @@ with gr.Blocks( | |
| 254 | 
             
                            visualize_btn = gr.Button("Visualize Layout", elem_classes="btn")
         | 
| 255 | 
             
                            generate_btn = gr.Button("Generate Image from Layout", variant='primary', elem_classes="btn")
         | 
| 256 | 
             
                        with gr.Column(scale=1):
         | 
| 257 | 
            -
                            gallery = gr. | 
| 258 | 
            -
                                label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain" | 
| 259 | 
             
                            )
         | 
| 260 | 
            -
             | 
| 261 | 
            -
                     | 
|  | |
| 262 |  | 
| 263 | 
             
                    gr.Examples(
         | 
| 264 | 
             
                        examples=stage2_examples,
         | 
| 265 | 
             
                        inputs=[response, overall_prompt_override, seed],
         | 
| 266 | 
             
                        outputs=[gallery],
         | 
| 267 | 
             
                        fn=get_ours_image,
         | 
| 268 | 
            -
                        cache_examples=True
         | 
| 269 | 
             
                    )
         | 
| 270 |  | 
| 271 | 
             
                with gr.Tab("Baseline: Stable Diffusion"):
         | 
| @@ -287,7 +308,7 @@ with gr.Blocks( | |
| 287 | 
             
                        inputs=[sd_prompt],
         | 
| 288 | 
             
                        outputs=[gallery],
         | 
| 289 | 
             
                        fn=get_baseline_image,
         | 
| 290 | 
            -
                        cache_examples=True
         | 
| 291 | 
             
                    )
         | 
| 292 |  | 
| 293 | 
             
            g.launch()
         | 
|  | |
| 10 | 
             
            import torch
         | 
| 11 | 
             
            from shared import DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
         | 
| 12 | 
             
            from examples import stage1_examples, stage2_examples
         | 
| 13 | 
            +
            import pickle
         | 
| 14 | 
            +
            import codecs
         | 
| 15 | 
            +
            import subprocess
         | 
| 16 | 
            +
            import base64
         | 
| 17 | 
            +
            import io
         | 
| 18 |  | 
| 19 | 
             
            print(f"Is CUDA available: {torch.cuda.is_available()}")
         | 
| 20 | 
             
            if torch.cuda.is_available():
         | 
|  | |
| 66 | 
             
            Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
         | 
| 67 | 
             
            Background prompt: A realistic photo of a grassy area."""
         | 
| 68 |  | 
| 69 | 
            +
            canvasbase64 = ""
         | 
| 70 | 
            +
            oursimagebase64 = ""
         | 
| 71 | 
            +
             | 
| 72 | 
             
            def get_lmd_prompt(prompt, template=default_template):
         | 
| 73 | 
             
                if prompt == "":
         | 
| 74 | 
             
                    prompt = prompt_placeholder
         | 
|  | |
| 77 | 
             
                return simplified_prompt.format(template=template, prompt=prompt)
         | 
| 78 |  | 
| 79 | 
             
            def get_layout_image(response):
         | 
| 80 | 
            +
                global canvasbase64
         | 
| 81 | 
             
                if response == "":
         | 
| 82 | 
             
                    response = layout_placeholder
         | 
| 83 | 
             
                gen_boxes, bg_prompt = parse_input(response)
         | 
|  | |
| 91 | 
             
                # Now we can save it to a numpy array.
         | 
| 92 | 
             
                data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
         | 
| 93 | 
             
                data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
         | 
| 94 | 
            +
                pic_IObytes = io.BytesIO()
         | 
| 95 | 
            +
                plt.savefig(pic_IObytes,  format='png')
         | 
| 96 | 
            +
                pic_IObytes.seek(0)
         | 
| 97 | 
            +
                canvasbase64 = base64.b64encode(pic_IObytes.read()).decode()
         | 
| 98 | 
            +
              
         | 
| 99 | 
             
                plt.clf()
         | 
| 100 | 
            +
                return [data,canvasbase64]
         | 
| 101 |  | 
| 102 | 
             
            def get_layout_image_gallery(response):
         | 
| 103 | 
            +
                return get_layout_image(response)
         | 
| 104 |  | 
| 105 | 
             
            def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
         | 
| 106 | 
            +
                global oursimagebase64
         | 
| 107 | 
             
                if response == "":
         | 
| 108 | 
             
                    response = layout_placeholder
         | 
| 109 | 
             
                gen_boxes, bg_prompt = parse_input(response)
         | 
|  | |
| 120 | 
             
                else:
         | 
| 121 | 
             
                    scheduler_key = "scheduler"
         | 
| 122 |  | 
| 123 | 
            +
                image_np, so_img_list, b64 = run_ours(
         | 
| 124 | 
             
                    spec, bg_seed=seed, overall_prompt_override=overall_prompt_override, fg_seed_start=fg_seed_start, 
         | 
| 125 | 
             
                    fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio, use_autocast=use_autocast,
         | 
| 126 | 
             
                    gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key,
         | 
| 127 | 
             
                    so_negative_prompt=so_negative_prompt, overall_negative_prompt=overall_negative_prompt, so_batch_size=2
         | 
| 128 | 
             
                )
         | 
| 129 | 
            +
                print(type(image_np))
         | 
| 130 | 
            +
                pic_IObytes = io.BytesIO()
         | 
| 131 | 
            +
                plt.savefig(pic_IObytes,  format='png')
         | 
| 132 | 
            +
                pic_IObytes.seek(0)
         | 
| 133 | 
            +
                canvasbase64 = base64.b64encode(pic_IObytes.read()).decode()
         | 
| 134 | 
            +
                images = [image_np, b64]
         | 
| 135 | 
            +
                # if show_so_imgs:
         | 
| 136 | 
            +
                #     images.extend([np.asarray(so_img) for so_img in so_img_list])
         | 
| 137 | 
             
                return images
         | 
| 138 |  | 
| 139 | 
             
            def get_baseline_image(prompt, seed=0):
         | 
|  | |
| 250 | 
             
                        inputs=[prompt],
         | 
| 251 | 
             
                        outputs=[output],
         | 
| 252 | 
             
                        fn=get_lmd_prompt,
         | 
| 253 | 
            +
                        # cache_examples=True
         | 
| 254 | 
             
                    )
         | 
| 255 |  | 
| 256 | 
             
                with gr.Tab("Stage 2 (New). Layout to Image generation"):
         | 
|  | |
| 274 | 
             
                            visualize_btn = gr.Button("Visualize Layout", elem_classes="btn")
         | 
| 275 | 
             
                            generate_btn = gr.Button("Generate Image from Layout", variant='primary', elem_classes="btn")
         | 
| 276 | 
             
                        with gr.Column(scale=1):
         | 
| 277 | 
            +
                            gallery = gr.Image(
         | 
| 278 | 
            +
                                label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain"                    
         | 
| 279 | 
             
                            )
         | 
| 280 | 
            +
                            b64 = gr.Textbox(label="base64", placeholder="base64", lines = 2)
         | 
| 281 | 
            +
                    visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=[gallery, b64], api_name="visualize-layout")
         | 
| 282 | 
            +
                    generate_btn.click(fn=get_ours_image, inputs=[response, overall_prompt_override, seed, num_inference_steps, dpm_scheduler, use_autocast, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=[gallery, b64], api_name="layout-to-image")
         | 
| 283 |  | 
| 284 | 
             
                    gr.Examples(
         | 
| 285 | 
             
                        examples=stage2_examples,
         | 
| 286 | 
             
                        inputs=[response, overall_prompt_override, seed],
         | 
| 287 | 
             
                        outputs=[gallery],
         | 
| 288 | 
             
                        fn=get_ours_image,
         | 
| 289 | 
            +
                        # cache_examples=True
         | 
| 290 | 
             
                    )
         | 
| 291 |  | 
| 292 | 
             
                with gr.Tab("Baseline: Stable Diffusion"):
         | 
|  | |
| 308 | 
             
                        inputs=[sd_prompt],
         | 
| 309 | 
             
                        outputs=[gallery],
         | 
| 310 | 
             
                        fn=get_baseline_image,
         | 
| 311 | 
            +
                        # cache_examples=True
         | 
| 312 | 
             
                    )
         | 
| 313 |  | 
| 314 | 
             
            g.launch()
         | 
    	
        generation.py
    CHANGED
    
    | @@ -8,6 +8,8 @@ from models import pipelines, sam | |
| 8 | 
             
            from utils import parse, latents
         | 
| 9 | 
             
            from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
         | 
| 10 | 
             
            import gc
         | 
|  | |
|  | |
| 11 |  | 
| 12 | 
             
            verbose = False
         | 
| 13 |  | 
| @@ -209,6 +211,10 @@ def run( | |
| 209 |  | 
| 210 | 
             
                gc.collect()
         | 
| 211 | 
             
                torch.cuda.empty_cache()
         | 
|  | |
|  | |
|  | |
|  | |
| 212 |  | 
| 213 | 
            -
                return images[0], so_img_list
         | 
| 214 |  | 
|  | |
| 8 | 
             
            from utils import parse, latents
         | 
| 9 | 
             
            from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
         | 
| 10 | 
             
            import gc
         | 
| 11 | 
            +
            from io import BytesIO
         | 
| 12 | 
            +
            import base64
         | 
| 13 |  | 
| 14 | 
             
            verbose = False
         | 
| 15 |  | 
|  | |
| 211 |  | 
| 212 | 
             
                gc.collect()
         | 
| 213 | 
             
                torch.cuda.empty_cache()
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                with BytesIO() as buffer:
         | 
| 216 | 
            +
                    np.save(buffer, images[0])
         | 
| 217 | 
            +
                    img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
         | 
| 218 |  | 
| 219 | 
            +
                return images[0], so_img_list, img_str
         | 
| 220 |  |