Michael Yang commited on
Commit
7134722
1 Parent(s): 0305ee7

b64 support:

Browse files
Files changed (2) hide show
  1. app.py +34 -13
  2. generation.py +7 -1
app.py CHANGED
@@ -10,6 +10,11 @@ from baseline import run as run_baseline
10
  import torch
11
  from shared import DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
12
  from examples import stage1_examples, stage2_examples
 
 
 
 
 
13
 
14
  print(f"Is CUDA available: {torch.cuda.is_available()}")
15
  if torch.cuda.is_available():
@@ -61,6 +66,9 @@ layout_placeholder = """Caption: A realistic photo of a gray cat and an orange d
61
  Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
62
  Background prompt: A realistic photo of a grassy area."""
63
 
 
 
 
64
  def get_lmd_prompt(prompt, template=default_template):
65
  if prompt == "":
66
  prompt = prompt_placeholder
@@ -69,6 +77,7 @@ def get_lmd_prompt(prompt, template=default_template):
69
  return simplified_prompt.format(template=template, prompt=prompt)
70
 
71
  def get_layout_image(response):
 
72
  if response == "":
73
  response = layout_placeholder
74
  gen_boxes, bg_prompt = parse_input(response)
@@ -82,13 +91,19 @@ def get_layout_image(response):
82
  # Now we can save it to a numpy array.
83
  data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
84
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
 
 
 
 
 
85
  plt.clf()
86
- return data
87
 
88
  def get_layout_image_gallery(response):
89
- return [get_layout_image(response)]
90
 
91
  def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
 
92
  if response == "":
93
  response = layout_placeholder
94
  gen_boxes, bg_prompt = parse_input(response)
@@ -105,15 +120,20 @@ def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_s
105
  else:
106
  scheduler_key = "scheduler"
107
 
108
- image_np, so_img_list = run_ours(
109
  spec, bg_seed=seed, overall_prompt_override=overall_prompt_override, fg_seed_start=fg_seed_start,
110
  fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio, use_autocast=use_autocast,
111
  gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key,
112
  so_negative_prompt=so_negative_prompt, overall_negative_prompt=overall_negative_prompt, so_batch_size=2
113
  )
114
- images = [image_np]
115
- if show_so_imgs:
116
- images.extend([np.asarray(so_img) for so_img in so_img_list])
 
 
 
 
 
117
  return images
118
 
119
  def get_baseline_image(prompt, seed=0):
@@ -230,7 +250,7 @@ with gr.Blocks(
230
  inputs=[prompt],
231
  outputs=[output],
232
  fn=get_lmd_prompt,
233
- cache_examples=True
234
  )
235
 
236
  with gr.Tab("Stage 2 (New). Layout to Image generation"):
@@ -254,18 +274,19 @@ with gr.Blocks(
254
  visualize_btn = gr.Button("Visualize Layout", elem_classes="btn")
255
  generate_btn = gr.Button("Generate Image from Layout", variant='primary', elem_classes="btn")
256
  with gr.Column(scale=1):
257
- gallery = gr.Gallery(
258
- label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain", preview=True
259
  )
260
- visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=gallery, api_name="visualize-layout")
261
- generate_btn.click(fn=get_ours_image, inputs=[response, overall_prompt_override, seed, num_inference_steps, dpm_scheduler, use_autocast, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=gallery, api_name="layout-to-image")
 
262
 
263
  gr.Examples(
264
  examples=stage2_examples,
265
  inputs=[response, overall_prompt_override, seed],
266
  outputs=[gallery],
267
  fn=get_ours_image,
268
- cache_examples=True
269
  )
270
 
271
  with gr.Tab("Baseline: Stable Diffusion"):
@@ -287,7 +308,7 @@ with gr.Blocks(
287
  inputs=[sd_prompt],
288
  outputs=[gallery],
289
  fn=get_baseline_image,
290
- cache_examples=True
291
  )
292
 
293
  g.launch()
 
10
  import torch
11
  from shared import DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
12
  from examples import stage1_examples, stage2_examples
13
+ import pickle
14
+ import codecs
15
+ import subprocess
16
+ import base64
17
+ import io
18
 
19
  print(f"Is CUDA available: {torch.cuda.is_available()}")
20
  if torch.cuda.is_available():
 
66
  Objects: [('a gray cat', [67, 243, 120, 126]), ('an orange dog', [265, 193, 190, 210])]
67
  Background prompt: A realistic photo of a grassy area."""
68
 
69
+ canvasbase64 = ""
70
+ oursimagebase64 = ""
71
+
72
  def get_lmd_prompt(prompt, template=default_template):
73
  if prompt == "":
74
  prompt = prompt_placeholder
 
77
  return simplified_prompt.format(template=template, prompt=prompt)
78
 
79
  def get_layout_image(response):
80
+ global canvasbase64
81
  if response == "":
82
  response = layout_placeholder
83
  gen_boxes, bg_prompt = parse_input(response)
 
91
  # Now we can save it to a numpy array.
92
  data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
93
  data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
94
+ pic_IObytes = io.BytesIO()
95
+ plt.savefig(pic_IObytes, format='png')
96
+ pic_IObytes.seek(0)
97
+ canvasbase64 = base64.b64encode(pic_IObytes.read()).decode()
98
+
99
  plt.clf()
100
+ return [data,canvasbase64]
101
 
102
  def get_layout_image_gallery(response):
103
+ return get_layout_image(response)
104
 
105
  def get_ours_image(response, overall_prompt_override="", seed=0, num_inference_steps=20, dpm_scheduler=True, use_autocast=False, fg_seed_start=20, fg_blending_ratio=0.1, frozen_step_ratio=0.4, gligen_scheduled_sampling_beta=0.3, so_negative_prompt=DEFAULT_SO_NEGATIVE_PROMPT, overall_negative_prompt=DEFAULT_OVERALL_NEGATIVE_PROMPT, show_so_imgs=False, scale_boxes=False):
106
+ global oursimagebase64
107
  if response == "":
108
  response = layout_placeholder
109
  gen_boxes, bg_prompt = parse_input(response)
 
120
  else:
121
  scheduler_key = "scheduler"
122
 
123
+ image_np, so_img_list, b64 = run_ours(
124
  spec, bg_seed=seed, overall_prompt_override=overall_prompt_override, fg_seed_start=fg_seed_start,
125
  fg_blending_ratio=fg_blending_ratio,frozen_step_ratio=frozen_step_ratio, use_autocast=use_autocast,
126
  gligen_scheduled_sampling_beta=gligen_scheduled_sampling_beta, num_inference_steps=num_inference_steps, scheduler_key=scheduler_key,
127
  so_negative_prompt=so_negative_prompt, overall_negative_prompt=overall_negative_prompt, so_batch_size=2
128
  )
129
+ print(type(image_np))
130
+ pic_IObytes = io.BytesIO()
131
+ plt.savefig(pic_IObytes, format='png')
132
+ pic_IObytes.seek(0)
133
+ canvasbase64 = base64.b64encode(pic_IObytes.read()).decode()
134
+ images = [image_np, b64]
135
+ # if show_so_imgs:
136
+ # images.extend([np.asarray(so_img) for so_img in so_img_list])
137
  return images
138
 
139
  def get_baseline_image(prompt, seed=0):
 
250
  inputs=[prompt],
251
  outputs=[output],
252
  fn=get_lmd_prompt,
253
+ # cache_examples=True
254
  )
255
 
256
  with gr.Tab("Stage 2 (New). Layout to Image generation"):
 
274
  visualize_btn = gr.Button("Visualize Layout", elem_classes="btn")
275
  generate_btn = gr.Button("Generate Image from Layout", variant='primary', elem_classes="btn")
276
  with gr.Column(scale=1):
277
+ gallery = gr.Image(
278
+ label="Generated image", show_label=False, elem_id="gallery", columns=[1], rows=[1], object_fit="contain"
279
  )
280
+ b64 = gr.Textbox(label="base64", placeholder="base64", lines = 2)
281
+ visualize_btn.click(fn=get_layout_image_gallery, inputs=response, outputs=[gallery, b64], api_name="visualize-layout")
282
+ generate_btn.click(fn=get_ours_image, inputs=[response, overall_prompt_override, seed, num_inference_steps, dpm_scheduler, use_autocast, fg_seed_start, fg_blending_ratio, frozen_step_ratio, gligen_scheduled_sampling_beta, so_negative_prompt, overall_negative_prompt, show_so_imgs, scale_boxes], outputs=[gallery, b64], api_name="layout-to-image")
283
 
284
  gr.Examples(
285
  examples=stage2_examples,
286
  inputs=[response, overall_prompt_override, seed],
287
  outputs=[gallery],
288
  fn=get_ours_image,
289
+ # cache_examples=True
290
  )
291
 
292
  with gr.Tab("Baseline: Stable Diffusion"):
 
308
  inputs=[sd_prompt],
309
  outputs=[gallery],
310
  fn=get_baseline_image,
311
+ # cache_examples=True
312
  )
313
 
314
  g.launch()
generation.py CHANGED
@@ -8,6 +8,8 @@ from models import pipelines, sam
8
  from utils import parse, latents
9
  from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
10
  import gc
 
 
11
 
12
  verbose = False
13
 
@@ -209,6 +211,10 @@ def run(
209
 
210
  gc.collect()
211
  torch.cuda.empty_cache()
 
 
 
 
212
 
213
- return images[0], so_img_list
214
 
 
8
  from utils import parse, latents
9
  from shared import model_dict, sam_model_dict, DEFAULT_SO_NEGATIVE_PROMPT, DEFAULT_OVERALL_NEGATIVE_PROMPT
10
  import gc
11
+ from io import BytesIO
12
+ import base64
13
 
14
  verbose = False
15
 
 
211
 
212
  gc.collect()
213
  torch.cuda.empty_cache()
214
+
215
+ with BytesIO() as buffer:
216
+ np.save(buffer, images[0])
217
+ img_str = base64.b64encode(buffer.getvalue()).decode('utf-8')
218
 
219
+ return images[0], so_img_list, img_str
220