|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.loaders import UNet2DConditionLoadersMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.embeddings import ( |
|
GaussianFourierProjection, |
|
TextImageProjection, |
|
TextImageTimeEmbedding, |
|
TextTimeEmbedding, |
|
TimestepEmbedding, |
|
Timesteps, |
|
) |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from .unet_2d_blocks import ( |
|
CrossAttnDownBlock2D, |
|
CrossAttnUpBlock2D, |
|
DownBlock2D, |
|
UNetMidBlock2DCrossAttn, |
|
UpBlock2D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
from .attention_processor import AttentionProcessor, AttnProcessor |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class UNet2DConditionOutput(BaseOutput): |
|
""" |
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
Hidden states conditioned on `encoder_hidden_states` input. Output of last layer of model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
cross_attention_probs_down: List[Any] |
|
cross_attention_probs_mid: List[Any] |
|
cross_attention_probs_up: List[Any] |
|
|
|
|
|
class FourierEmbedder(nn.Module): |
|
def __init__(self, num_freqs=64, temperature=100): |
|
super().__init__() |
|
|
|
self.num_freqs = num_freqs |
|
self.temperature = temperature |
|
|
|
freq_bands = temperature ** (torch.arange(num_freqs) / num_freqs) |
|
freq_bands = freq_bands[None, None, None] |
|
self.register_buffer('freq_bands', freq_bands, persistent=False) |
|
|
|
def __call__(self, x): |
|
x = self.freq_bands * x.unsqueeze(-1) |
|
return torch.stack((x.sin(), x.cos()), dim=-1).permute(0, 1, 3, 4, 2).reshape(*x.shape[:2], -1) |
|
|
|
|
|
class PositionNet(nn.Module): |
|
def __init__(self, positive_len, out_dim, fourier_freqs=8): |
|
super().__init__() |
|
self.positive_len = positive_len |
|
self.out_dim = out_dim |
|
|
|
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs) |
|
self.position_dim = fourier_freqs * 2 * 4 |
|
|
|
self.linears = nn.Sequential( |
|
nn.Linear(self.positive_len + self.position_dim, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, 512), |
|
nn.SiLU(), |
|
nn.Linear(512, out_dim), |
|
) |
|
|
|
self.null_positive_feature = torch.nn.Parameter(torch.zeros([self.positive_len])) |
|
self.null_position_feature = torch.nn.Parameter(torch.zeros([self.position_dim])) |
|
|
|
def forward(self, boxes, masks, positive_embeddings): |
|
masks = masks.unsqueeze(-1) |
|
|
|
|
|
xyxy_embedding = self.fourier_embedder(boxes) |
|
|
|
|
|
positive_null = self.null_positive_feature.view(1, 1, -1) |
|
xyxy_null = self.null_position_feature.view(1, 1, -1) |
|
|
|
|
|
positive_embeddings = positive_embeddings * masks + (1 - masks) * positive_null |
|
xyxy_embedding = xyxy_embedding * masks + (1 - masks) * xyxy_null |
|
|
|
objs = self.linears(torch.cat([positive_embeddings, xyxy_embedding], dim=-1)) |
|
return objs |
|
|
|
|
|
|
|
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin): |
|
r""" |
|
UNet2DConditionModel is a conditional 2D UNet model that takes in a noisy sample, conditional state, and a timestep |
|
and returns sample shaped output. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the models (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`): |
|
Height and width of input/output sample. |
|
in_channels (`int`, *optional*, defaults to 4): The number of channels in the input sample. |
|
out_channels (`int`, *optional*, defaults to 4): The number of channels in the output. |
|
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample. |
|
flip_sin_to_cos (`bool`, *optional*, defaults to `False`): |
|
Whether to flip the sin to cos in the time embedding. |
|
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`): |
|
The tuple of downsample blocks to use. |
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`): |
|
The mid block type. Choose from `UNetMidBlock2DCrossAttn` or `UNetMidBlock2DSimpleCrossAttn`, will skip the |
|
mid block layer if `None`. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D",)`): |
|
The tuple of upsample blocks to use. |
|
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`): |
|
Whether to include self-attention in the basic transformer blocks, see |
|
[`~models.attention.BasicTransformerBlock`]. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`): |
|
The tuple of output channels for each block. |
|
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block. |
|
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution. |
|
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization. |
|
If `None`, it will skip the normalization and activation layers in post-processing |
|
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization. |
|
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280): |
|
The dimension of the cross attention features. |
|
encoder_hid_dim (`int`, *optional*, defaults to None): |
|
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim` |
|
dimension to `cross_attention_dim`. |
|
encoder_hid_dim_type (`str`, *optional*, defaults to None): |
|
If given, the `encoder_hidden_states` and potentially other embeddings will be down-projected to text |
|
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`. |
|
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads. |
|
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config |
|
for resnet blocks, see [`~models.resnet.ResnetBlock2D`]. Choose from `default` or `scale_shift`. |
|
class_embed_type (`str`, *optional*, defaults to None): |
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`, |
|
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`. |
|
addition_embed_type (`str`, *optional*, defaults to None): |
|
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or |
|
"text". "text" will use the `TextTimeEmbedding` layer. |
|
num_class_embeds (`int`, *optional*, defaults to None): |
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing |
|
class conditioning with `class_embed_type` equal to `None`. |
|
time_embedding_type (`str`, *optional*, default to `positional`): |
|
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`. |
|
time_embedding_dim (`int`, *optional*, default to `None`): |
|
An optional override for the dimension of the projected time embedding. |
|
time_embedding_act_fn (`str`, *optional*, default to `None`): |
|
Optional activation function to use on the time embeddings only one time before they as passed to the rest |
|
of the unet. Choose from `silu`, `mish`, `gelu`, and `swish`. |
|
timestep_post_act (`str, *optional*, default to `None`): |
|
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`. |
|
time_cond_proj_dim (`int`, *optional*, default to `None`): |
|
The dimension of `cond_proj` layer in timestep embedding. |
|
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. |
|
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer. |
|
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when |
|
using the "projection" `class_embed_type`. Required when using the "projection" `class_embed_type`. |
|
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time |
|
embeddings with the class embeddings. |
|
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`): |
|
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If |
|
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is None, the |
|
`only_cross_attention` value will be used as the value for `mid_block_only_cross_attention`. Else, it will |
|
default to `False`. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"CrossAttnDownBlock2D", |
|
"DownBlock2D", |
|
), |
|
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn", |
|
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: Union[int, Tuple[int]] = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: Optional[int] = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: Union[int, Tuple[int]] = 1280, |
|
encoder_hid_dim: Optional[int] = None, |
|
encoder_hid_dim_type: Optional[str] = None, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
addition_embed_type: Optional[str] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
resnet_skip_time_act: bool = False, |
|
resnet_out_scale_factor: int = 1.0, |
|
time_embedding_type: str = "positional", |
|
time_embedding_dim: Optional[int] = None, |
|
time_embedding_act_fn: Optional[str] = None, |
|
timestep_post_act: Optional[str] = None, |
|
time_cond_proj_dim: Optional[int] = None, |
|
conv_in_kernel: int = 3, |
|
conv_out_kernel: int = 3, |
|
projection_class_embeddings_input_dim: Optional[int] = None, |
|
class_embeddings_concat: bool = False, |
|
mid_block_only_cross_attention: Optional[bool] = None, |
|
cross_attention_norm: Optional[str] = None, |
|
addition_embed_type_num_heads=64, |
|
use_gated_attention: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
|
|
|
|
if len(down_block_types) != len(up_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}." |
|
) |
|
|
|
if len(block_out_channels) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types): |
|
raise ValueError( |
|
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}." |
|
) |
|
|
|
|
|
conv_in_padding = (conv_in_kernel - 1) // 2 |
|
self.conv_in = nn.Conv2d( |
|
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding |
|
) |
|
|
|
|
|
if time_embedding_type == "fourier": |
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2 |
|
if time_embed_dim % 2 != 0: |
|
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.") |
|
self.time_proj = GaussianFourierProjection( |
|
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos |
|
) |
|
timestep_input_dim = time_embed_dim |
|
elif time_embedding_type == "positional": |
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4 |
|
|
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = block_out_channels[0] |
|
else: |
|
raise ValueError( |
|
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`." |
|
) |
|
|
|
self.time_embedding = TimestepEmbedding( |
|
timestep_input_dim, |
|
time_embed_dim, |
|
act_fn=act_fn, |
|
post_act_fn=timestep_post_act, |
|
cond_proj_dim=time_cond_proj_dim, |
|
) |
|
|
|
if encoder_hid_dim_type is None and encoder_hid_dim is not None: |
|
encoder_hid_dim_type = "text_proj" |
|
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.") |
|
|
|
if encoder_hid_dim is None and encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}." |
|
) |
|
|
|
if encoder_hid_dim_type == "text_proj": |
|
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim) |
|
elif encoder_hid_dim_type == "text_image_proj": |
|
|
|
|
|
|
|
self.encoder_hid_proj = TextImageProjection( |
|
text_embed_dim=encoder_hid_dim, |
|
image_embed_dim=cross_attention_dim, |
|
cross_attention_dim=cross_attention_dim, |
|
) |
|
|
|
elif encoder_hid_dim_type is not None: |
|
raise ValueError( |
|
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'." |
|
) |
|
else: |
|
self.encoder_hid_proj = None |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
elif class_embed_type == "projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim) |
|
elif class_embed_type == "simple_projection": |
|
if projection_class_embeddings_input_dim is None: |
|
raise ValueError( |
|
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set" |
|
) |
|
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim) |
|
else: |
|
self.class_embedding = None |
|
|
|
if addition_embed_type == "text": |
|
if encoder_hid_dim is not None: |
|
text_time_embedding_from_dim = encoder_hid_dim |
|
else: |
|
text_time_embedding_from_dim = cross_attention_dim |
|
|
|
self.add_embedding = TextTimeEmbedding( |
|
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads |
|
) |
|
elif addition_embed_type == "text_image": |
|
|
|
|
|
|
|
self.add_embedding = TextImageTimeEmbedding( |
|
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim |
|
) |
|
elif addition_embed_type is not None: |
|
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.") |
|
|
|
if time_embedding_act_fn is None: |
|
self.time_embed_act = None |
|
elif time_embedding_act_fn == "swish": |
|
self.time_embed_act = lambda x: F.silu(x) |
|
elif time_embedding_act_fn == "mish": |
|
self.time_embed_act = nn.Mish() |
|
elif time_embedding_act_fn == "silu": |
|
self.time_embed_act = nn.SiLU() |
|
elif time_embedding_act_fn == "gelu": |
|
self.time_embed_act = nn.GELU() |
|
else: |
|
raise ValueError(f"Unsupported activation function: {time_embedding_act_fn}") |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(only_cross_attention, bool): |
|
if mid_block_only_cross_attention is None: |
|
mid_block_only_cross_attention = only_cross_attention |
|
|
|
only_cross_attention = [only_cross_attention] * len(down_block_types) |
|
|
|
if mid_block_only_cross_attention is None: |
|
mid_block_only_cross_attention = False |
|
|
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(down_block_types) |
|
|
|
if isinstance(cross_attention_dim, int): |
|
cross_attention_dim = (cross_attention_dim,) * len(down_block_types) |
|
else: |
|
assert not use_gated_attention, f"use_gated_attention is not supported with varying cross_attention_dim: {cross_attention_dim}" |
|
|
|
if isinstance(layers_per_block, int): |
|
layers_per_block = [layers_per_block] * len(down_block_types) |
|
|
|
if class_embeddings_concat: |
|
|
|
|
|
|
|
blocks_time_embed_dim = time_embed_dim * 2 |
|
else: |
|
blocks_time_embed_dim = time_embed_dim |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block[i], |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim[i], |
|
attn_num_head_channels=attention_head_dim[i], |
|
downsample_padding=downsample_padding, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
resnet_skip_time_act=resnet_skip_time_act, |
|
resnet_out_scale_factor=resnet_out_scale_factor, |
|
cross_attention_norm=cross_attention_norm, |
|
use_gated_attention=use_gated_attention, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
if mid_block_type == "UNetMidBlock2DCrossAttn": |
|
self.mid_block = UNetMidBlock2DCrossAttn( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=blocks_time_embed_dim, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
cross_attention_dim=cross_attention_dim[-1], |
|
attn_num_head_channels=attention_head_dim[-1], |
|
resnet_groups=norm_num_groups, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
use_gated_attention=use_gated_attention, |
|
) |
|
elif mid_block_type is None: |
|
self.mid_block = None |
|
else: |
|
raise ValueError(f"unknown mid_block_type : {mid_block_type}") |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_attention_head_dim = list(reversed(attention_head_dim)) |
|
reversed_layers_per_block = list(reversed(layers_per_block)) |
|
reversed_cross_attention_dim = list(reversed(cross_attention_dim)) |
|
only_cross_attention = list(reversed(only_cross_attention)) |
|
|
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=reversed_layers_per_block[i] + 1, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=blocks_time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=reversed_cross_attention_dim[i], |
|
attn_num_head_channels=reversed_attention_head_dim[i], |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
resnet_skip_time_act=resnet_skip_time_act, |
|
resnet_out_scale_factor=resnet_out_scale_factor, |
|
cross_attention_norm=cross_attention_norm, |
|
use_gated_attention=use_gated_attention, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_num_groups is not None: |
|
self.conv_norm_out = nn.GroupNorm( |
|
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps |
|
) |
|
|
|
if act_fn == "swish": |
|
self.conv_act = lambda x: F.silu(x) |
|
elif act_fn == "mish": |
|
self.conv_act = nn.Mish() |
|
elif act_fn == "silu": |
|
self.conv_act = nn.SiLU() |
|
elif act_fn == "gelu": |
|
self.conv_act = nn.GELU() |
|
else: |
|
raise ValueError(f"Unsupported activation function: {act_fn}") |
|
|
|
else: |
|
self.conv_norm_out = None |
|
self.conv_act = None |
|
|
|
conv_out_padding = (conv_out_kernel - 1) // 2 |
|
self.conv_out = nn.Conv2d( |
|
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding |
|
) |
|
|
|
if use_gated_attention: |
|
self.position_net = PositionNet(positive_len=768, out_dim=cross_attention_dim[-1]) |
|
|
|
|
|
@property |
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "set_processor"): |
|
processors[f"{name}.processor"] = module.processor |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Parameters: |
|
`processor (`dict` of `AttentionProcessor` or `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
of **all** `Attention` layers. |
|
In case `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors.: |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
self.set_attn_processor(AttnProcessor()) |
|
|
|
def set_attention_slice(self, slice_size): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
`"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_sliceable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_sliceable_dims(module) |
|
|
|
num_sliceable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_sliceable_layers * [1] |
|
|
|
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i in range(len(slice_size)): |
|
size = slice_size[i] |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D, CrossAttnUpBlock2D, UpBlock2D)): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
timestep_cond: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, |
|
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None, |
|
mid_block_additional_residual: Optional[torch.Tensor] = None, |
|
encoder_attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
return_cross_attention_probs: bool = False |
|
) -> Union[UNet2DConditionOutput, Tuple]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps |
|
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states |
|
encoder_attention_mask (`torch.Tensor`): |
|
(batch, sequence_length) cross-attention mask, applied to encoder_hidden_states. True = keep, False = |
|
discard. Mask will be converted into a bias, which adds large negative values to attention scores |
|
corresponding to "discard" tokens. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
cross_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). |
|
added_cond_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified includes additonal conditions that can be used for additonal time |
|
embeddings or encoder hidden states projections. See the configurations `encoder_hid_dim_type` and |
|
`addition_embed_type` for more information. |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if encoder_attention_mask is not None: |
|
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 |
|
encoder_attention_mask = encoder_attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=sample.dtype) |
|
|
|
emb = self.time_embedding(t_emb, timestep_cond) |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
|
|
|
|
class_labels = class_labels.to(dtype=sample.dtype) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype) |
|
|
|
if self.config.class_embeddings_concat: |
|
emb = torch.cat([emb, class_emb], dim=-1) |
|
else: |
|
emb = emb + class_emb |
|
|
|
if self.config.addition_embed_type == "text": |
|
aug_emb = self.add_embedding(encoder_hidden_states) |
|
emb = emb + aug_emb |
|
elif self.config.addition_embed_type == "text_image": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`" |
|
) |
|
|
|
image_embs = added_cond_kwargs.get("image_embeds") |
|
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states) |
|
|
|
aug_emb = self.add_embedding(text_embs, image_embs) |
|
emb = emb + aug_emb |
|
|
|
if self.time_embed_act is not None: |
|
emb = self.time_embed_act(emb) |
|
|
|
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj": |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) |
|
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj": |
|
|
|
if "image_embeds" not in added_cond_kwargs: |
|
raise ValueError( |
|
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`" |
|
) |
|
|
|
image_embeds = added_cond_kwargs.get("image_embeds") |
|
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds) |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
if cross_attention_kwargs is not None and cross_attention_kwargs.get('gligen', None) is not None: |
|
cross_attention_kwargs = cross_attention_kwargs.copy() |
|
cross_attention_kwargs['gligen'] = { |
|
'objs': self.position_net( |
|
boxes=cross_attention_kwargs['gligen']['boxes'], |
|
masks=cross_attention_kwargs['gligen']['masks'], |
|
positive_embeddings=cross_attention_kwargs['gligen']['positive_embeddings'] |
|
), |
|
'fuser_attn_kwargs': cross_attention_kwargs['gligen'].get('fuser_attn_kwargs', {}) |
|
} |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
cross_attention_probs_down = [] |
|
if cross_attention_kwargs is None: |
|
cross_attention_kwargs = {} |
|
|
|
for i, downsample_block in enumerate(self.down_blocks): |
|
cross_attention_kwargs["attn_key"] = ["down", i] |
|
|
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
downsample_block_output = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_cross_attention_probs=return_cross_attention_probs, |
|
) |
|
if return_cross_attention_probs: |
|
sample, res_samples, cross_attention_probs = downsample_block_output |
|
cross_attention_probs_down.append(cross_attention_probs) |
|
else: |
|
sample, res_samples = downsample_block_output |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
if down_block_additional_residuals is not None: |
|
new_down_block_res_samples = () |
|
|
|
for down_block_res_sample, down_block_additional_residual in zip( |
|
down_block_res_samples, down_block_additional_residuals |
|
): |
|
down_block_res_sample = down_block_res_sample + down_block_additional_residual |
|
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,) |
|
|
|
down_block_res_samples = new_down_block_res_samples |
|
|
|
|
|
cross_attention_probs_mid = [] |
|
if self.mid_block is not None: |
|
cross_attention_kwargs["attn_key"] = ["mid", 0] |
|
|
|
sample = self.mid_block( |
|
sample, |
|
emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_cross_attention_probs=return_cross_attention_probs, |
|
) |
|
if return_cross_attention_probs: |
|
sample, cross_attention_probs = sample |
|
cross_attention_probs_mid.append(cross_attention_probs) |
|
|
|
|
|
if mid_block_additional_residual is not None: |
|
sample = sample + mid_block_additional_residual |
|
|
|
cross_attention_probs_up = [] |
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
cross_attention_kwargs["attn_key"] = ["up", i] |
|
|
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
encoder_attention_mask=encoder_attention_mask, |
|
return_cross_attention_probs=return_cross_attention_probs, |
|
) |
|
if return_cross_attention_probs: |
|
sample, cross_attention_probs = sample |
|
cross_attention_probs_up.append(cross_attention_probs) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size |
|
) |
|
|
|
|
|
if self.conv_norm_out: |
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet2DConditionOutput(sample=sample, cross_attention_probs_down=cross_attention_probs_down, cross_attention_probs_mid=cross_attention_probs_mid, cross_attention_probs_up=cross_attention_probs_up) |
|
|