Spaces:
Runtime error
Runtime error
initial commit
Browse files- app.py +85 -0
- requirements.txt +11 -0
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
import clip
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import seaborn as sns
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
|
12 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
13 |
+
|
14 |
+
model_name = 'ViT-B/16' #@param ['RN50', 'RN101', 'RN50x4', 'RN50x16', 'ViT-B/32', 'ViT-B/16']
|
15 |
+
model, preprocess = clip.load(model_name)
|
16 |
+
|
17 |
+
model.to(DEVICE).eval()
|
18 |
+
resolution = model.visual.input_resolution
|
19 |
+
resizer = torchvision.transforms.Resize(size=(resolution, resolution))
|
20 |
+
|
21 |
+
|
22 |
+
def create_rgb_tensor(color):
|
23 |
+
"""color is e.g. [1,0,0]"""
|
24 |
+
return torch.tensor(color, device=DEVICE).reshape((1, 3, 1, 1))
|
25 |
+
|
26 |
+
def encode_color(color):
|
27 |
+
"""color is e.g. [1,0,0]"""
|
28 |
+
rgb = create_rgb_tensor(color)
|
29 |
+
return model.encode_image( resizer(rgb) )
|
30 |
+
|
31 |
+
def encode_text(text):
|
32 |
+
tokenized_text = clip.tokenize(text).to(DEVICE)
|
33 |
+
return model.encode_text(tokenized_text)
|
34 |
+
|
35 |
+
class RGBModel(torch.nn.Module):
|
36 |
+
def __init__(self, device):
|
37 |
+
# Call nn.Module.__init__() to instantiate typical torch.nn.Module stuff
|
38 |
+
super(RGBModel, self).__init__()
|
39 |
+
self.color = torch.nn.Parameter(torch.ones((1, 3, 1, 1), device=device) / 2)
|
40 |
+
|
41 |
+
def forward(self):
|
42 |
+
# Clamp numbers to the closed interval [0,1]
|
43 |
+
self.color.data = self.color.data.clamp(0,1)
|
44 |
+
|
45 |
+
return self.color
|
46 |
+
|
47 |
+
text_input = gr.inputs.Textbox(lines=1, label="Text Prompt", default='A solid red square')
|
48 |
+
steps_input = gr.inputs.Slider(minimum=1, maximum=100, step=1, default=11, label="Training Steps")
|
49 |
+
lr_input = gr.inputs.Number(default=0.06, label="Adam Optimizer Learning Rate")
|
50 |
+
decay_input = gr.inputs.Number(default=0.01, label="Adam Optimizer Weight Decay")
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
def gradio_fn(text_prompt, adam_learning_rate, adam_weight_decay, n_iterations=50):
|
55 |
+
|
56 |
+
rgb_model = RGBModel(device=DEVICE)
|
57 |
+
opt = torch.optim.AdamW([rgb_model()], lr=adam_learning_rate, weight_decay=adam_weight_decay)
|
58 |
+
|
59 |
+
with torch.no_grad():
|
60 |
+
tokenized_text = clip.tokenize(text_prompt).cuda()
|
61 |
+
target_embedding = model.encode_text(tokenized_text).detach().clone()
|
62 |
+
|
63 |
+
def training_step():
|
64 |
+
opt.zero_grad()
|
65 |
+
color = rgb_model()
|
66 |
+
color_img = resizer(color)
|
67 |
+
image_embedding = model.encode_image(color_img)
|
68 |
+
loss = -1 * torch.cosine_similarity(target_embedding, image_embedding, dim=-1)
|
69 |
+
loss.backward()
|
70 |
+
opt.step()
|
71 |
+
|
72 |
+
steps = []
|
73 |
+
steps.append(rgb_model().cpu().detach().numpy())
|
74 |
+
for iteration in range(n_iterations):
|
75 |
+
training_step()
|
76 |
+
steps.append(rgb_model().cpu().detach().numpy())
|
77 |
+
|
78 |
+
steps = np.stack([steps])
|
79 |
+
|
80 |
+
img_train = Image.fromarray((steps[:,:,0,:,0,0] * 255).astype(np.uint8)).resize((400, 100), 0)
|
81 |
+
|
82 |
+
return img_train
|
83 |
+
|
84 |
+
iface = gr.Interface( fn=gradio_fn, inputs=[text_input, lr_input, decay_input, steps_input], outputs="image")
|
85 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
comet_ml
|
2 |
+
ftfy
|
3 |
+
regex
|
4 |
+
git+https://github.com/openai/CLIP.git
|
5 |
+
pandas
|
6 |
+
Pillow
|
7 |
+
tqdm
|
8 |
+
torch
|
9 |
+
torchvision
|
10 |
+
matplotlib
|
11 |
+
seaborn
|