Spaces:
Running
Running
mhemanthkmr143
commited on
Commit
·
dbc5a52
1
Parent(s):
d22e7f9
Code Added
Browse files- app.py +122 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from speechbrain.inference.speaker import EncoderClassifier
|
6 |
+
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
7 |
+
import noisereduce as nr
|
8 |
+
import librosa
|
9 |
+
|
10 |
+
# Load the classifier model
|
11 |
+
classifier = EncoderClassifier.from_hparams(source="speechbrain/spkrec-xvect-voxceleb", savedir="pretrained_models/spkrec-xvect-voxceleb")
|
12 |
+
|
13 |
+
|
14 |
+
def f2embed(wav_file, classifier, size_embed):
|
15 |
+
|
16 |
+
signal, fs = stereo_to_mono(wav_file)
|
17 |
+
if signal is None:
|
18 |
+
return None
|
19 |
+
# print(fs, "FS")
|
20 |
+
if fs != 16000:
|
21 |
+
signal, fs = resample_to_16000(signal, fs)
|
22 |
+
if signal is None:
|
23 |
+
return None
|
24 |
+
assert fs == 16000, fs
|
25 |
+
with torch.no_grad():
|
26 |
+
embeddings = classifier.encode_batch(signal)
|
27 |
+
embeddings = F.normalize(embeddings, dim=2)
|
28 |
+
embeddings = embeddings.squeeze().cpu().numpy()
|
29 |
+
assert embeddings.shape[0] == size_embed, embeddings.shape[0]
|
30 |
+
return embeddings
|
31 |
+
|
32 |
+
def stereo_to_mono(wav_file):
|
33 |
+
try:
|
34 |
+
signal, fs = torchaudio.load(wav_file)
|
35 |
+
signal_np = signal.numpy()
|
36 |
+
if signal_np.shape[0] == 2: # If stereo
|
37 |
+
signal_mono = librosa.to_mono(signal_np)
|
38 |
+
signal_mono = torch.from_numpy(signal_mono).unsqueeze(0)
|
39 |
+
else:
|
40 |
+
signal_mono = signal # Already mono
|
41 |
+
print(f"Converted to mono: {signal_mono.shape}")
|
42 |
+
return signal_mono, fs
|
43 |
+
except Exception as e:
|
44 |
+
print(f"Error in stereo_to_mono: {e}")
|
45 |
+
return None, None
|
46 |
+
|
47 |
+
def resample_to_16000(signal, original_sr):
|
48 |
+
try:
|
49 |
+
signal_np = signal.numpy().flatten()
|
50 |
+
signal_resampled = librosa.resample(signal_np, orig_sr=original_sr, target_sr=16000)
|
51 |
+
signal_resampled = torch.from_numpy(signal_resampled).unsqueeze(0)
|
52 |
+
print(f"Resampled to 16000 Hz: {signal_resampled.shape}")
|
53 |
+
return signal_resampled, 16000
|
54 |
+
except Exception as e:
|
55 |
+
print(f"Error in resample_to_16000: {e}")
|
56 |
+
return None, None
|
57 |
+
|
58 |
+
def reduce_noise(speech, noise_reduction_amount=0.5):
|
59 |
+
try:
|
60 |
+
denoised_speech = nr.reduce_noise(y=speech, sr=16000)
|
61 |
+
return denoised_speech
|
62 |
+
except Exception as e:
|
63 |
+
print(f"Error in reduce_noise: {e}")
|
64 |
+
return speech
|
65 |
+
|
66 |
+
|
67 |
+
|
68 |
+
def process_audio(wav_file, text):
|
69 |
+
try:
|
70 |
+
# Extract speaker embeddings
|
71 |
+
speaker_embeddings = f2embed(wav_file, classifier, 512)
|
72 |
+
if speaker_embeddings is None:
|
73 |
+
return None, "Error in speaker embedding extraction"
|
74 |
+
|
75 |
+
embeddings = torch.tensor(speaker_embeddings).unsqueeze(0)
|
76 |
+
|
77 |
+
# Load and process the speech file
|
78 |
+
signal, fs = torchaudio.load(wav_file)
|
79 |
+
signal_np = signal.numpy().flatten()
|
80 |
+
print(f"Loaded signal: {signal_np.shape}, Sample rate: {fs}")
|
81 |
+
|
82 |
+
# Convert text to speech using the speaker embeddings
|
83 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
84 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
|
85 |
+
inputs = processor(text=text, return_tensors="pt")
|
86 |
+
inputs.update({"speaker_embeddings": embeddings})
|
87 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
88 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings=inputs["speaker_embeddings"],vocoder=vocoder)
|
89 |
+
print(f"Generated speech, shape: {speech.shape}")
|
90 |
+
|
91 |
+
# Reduce noise
|
92 |
+
speech_denoised = reduce_noise(speech)
|
93 |
+
print(f"Reduced noise, signal shape: {speech_denoised.shape}")
|
94 |
+
return speech_denoised, 16000
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error in process_audio: {e}")
|
97 |
+
return None, "Error in audio processing"
|
98 |
+
|
99 |
+
# Gradio interface
|
100 |
+
def gradio_interface(wav_file, text):
|
101 |
+
try:
|
102 |
+
processed_audio, rate = process_audio(wav_file, text)
|
103 |
+
if processed_audio is None:
|
104 |
+
return "Error occurred during processing"
|
105 |
+
return (rate, processed_audio)
|
106 |
+
except Exception as e:
|
107 |
+
print(f"Error in gradio_interface: {e}")
|
108 |
+
return "Error occurred during processing"
|
109 |
+
|
110 |
+
# Create Gradio interface
|
111 |
+
gr_interface = gr.Interface(
|
112 |
+
fn=gradio_interface,
|
113 |
+
inputs=[gr.Audio(type="filepath"), gr.Textbox(lines=2, placeholder="Enter text here...")],
|
114 |
+
outputs=gr.Audio(type="numpy"),
|
115 |
+
title="Text-to-Speech with Speaker Embeddings",
|
116 |
+
description="Upload a speaker audio file and enter text to convert the text to speech using the speaker's voice.",
|
117 |
+
)
|
118 |
+
|
119 |
+
gr_interface.launch()
|
120 |
+
|
121 |
+
|
122 |
+
# process_audio("/content/Network Chunck.mp3","Hello this network chunk")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torchaudio
|
3 |
+
transformers
|
4 |
+
noisereduce
|
5 |
+
librosa
|
6 |
+
speechbrain
|