|
import os |
|
import time |
|
import gradio as gr |
|
import openai |
|
from llama_index import GPTSimpleVectorIndex, Document, SimpleDirectoryReader |
|
|
|
|
|
|
|
|
|
os.environ['OPENAI_API_KEY'] = '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' |
|
|
|
|
|
|
|
filename = 'Penta_index_demo.json' |
|
index = GPTSimpleVectorIndex.load_from_disk('{}'.format(filename)) |
|
|
|
def get_model_reply_no_prev_context(query): |
|
|
|
response = index.query(query) |
|
final_response = response.response |
|
return final_response |
|
|
|
|
|
|
|
title = "Knowledge Center at Penta Building Group" |
|
description = """ |
|
The program is trained to answer questions based on the documentation of 'Lessons Learned' from previous projects! |
|
|
|
|
|
<img src="https://huggingface.co/spaces/mgupta70/PBG/blob/main/penta.png" width=200px> |
|
""" |
|
|
|
article = "Your feedback matters!If you like it, contact me at mgupta70@asu.edu" |
|
|
|
gr.Interface( |
|
fn=get_model_reply_no_prev_context, |
|
inputs="textbox", |
|
outputs="text", |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[["Which code is to be used while planning a pedestrian walkway?"], ["What is AHJ?"]], live=True |
|
).launch(share=True) |