Spaces:
Sleeping
Sleeping
Update app.py with new model , update desc
Browse files
app.py
CHANGED
@@ -14,9 +14,9 @@ class Flatten(nn.Module):
|
|
14 |
class ConvNet(nn.Module):
|
15 |
def __init__(self):
|
16 |
super(ConvNet, self).__init__()
|
17 |
-
self.conv1 = nn.Conv2d(1,
|
18 |
-
self.conv2 = nn.Conv2d(
|
19 |
-
self.conv3 = nn.Conv2d(
|
20 |
self.fc = nn.Linear(10,10)
|
21 |
self.dropout = nn.Dropout(0.5)
|
22 |
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
@@ -50,7 +50,7 @@ def predict(img, withGradio=False):
|
|
50 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
|
52 |
# Get the state_dict of conv_net
|
53 |
-
state_dict = torch.load('model-
|
54 |
|
55 |
# Define a new state_dict for ConvNet
|
56 |
new_state_dict = OrderedDict()
|
@@ -86,8 +86,8 @@ def wrapper_fn(input_image):
|
|
86 |
return predict(input_image, withGradio=True)
|
87 |
|
88 |
# Define Gradio interface
|
89 |
-
title = "MNIST - understanding the
|
90 |
-
description = "I have created and trained a
|
91 |
examples = ['data/0-custom-invert.jpg', 'data/0.jpg', 'data/2.jpg', 'data/3.jpg', 'data/5.jpg', 'data/9.jpg', 'data/0-custom.jpg',]
|
92 |
output = gr.Textbox(label="Output prediction")
|
93 |
app = gr.Interface(fn=wrapper_fn, inputs=gr.Image(), outputs=output, title=title,description=description,examples=examples)
|
|
|
14 |
class ConvNet(nn.Module):
|
15 |
def __init__(self):
|
16 |
super(ConvNet, self).__init__()
|
17 |
+
self.conv1 = nn.Conv2d(1, 64, kernel_size=5, stride=2, padding=1)
|
18 |
+
self.conv2 = nn.Conv2d(64, 64, kernel_size=5, stride=2, padding=1)
|
19 |
+
self.conv3 = nn.Conv2d(64, 10, kernel_size=5, stride=2, padding=1)
|
20 |
self.fc = nn.Linear(10,10)
|
21 |
self.dropout = nn.Dropout(0.5)
|
22 |
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
|
|
50 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
51 |
|
52 |
# Get the state_dict of conv_net
|
53 |
+
state_dict = torch.load('this-is-mnist-model-f1c-desk-19092023.pth')
|
54 |
|
55 |
# Define a new state_dict for ConvNet
|
56 |
new_state_dict = OrderedDict()
|
|
|
86 |
return predict(input_image, withGradio=True)
|
87 |
|
88 |
# Define Gradio interface
|
89 |
+
title = "MNIST - understanding the basics"
|
90 |
+
description = "I have created and trained a CNN for MNIST. You can find the exercise notebook [here](https://www.kaggle.com/code/mindgspl/exercise-mnist). Note : use same size image as the model 28x28, white text on black for best results. "
|
91 |
examples = ['data/0-custom-invert.jpg', 'data/0.jpg', 'data/2.jpg', 'data/3.jpg', 'data/5.jpg', 'data/9.jpg', 'data/0-custom.jpg',]
|
92 |
output = gr.Textbox(label="Output prediction")
|
93 |
app = gr.Interface(fn=wrapper_fn, inputs=gr.Image(), outputs=output, title=title,description=description,examples=examples)
|