Spaces:
Runtime error
Runtime error
import gradio as gr | |
from fastai.vision.all import * | |
import skimage | |
learn = load_learner('saved_model/model.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred,pred_idx,probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title = "Fastai homework : Ghost type Classifier" | |
description = "No intent to create a real ghost detector π», but will recognize your pet's costumes! More work is needed to create better datasets, but still I enjoyed the exercise. Image dataset from the web & built with fastai. Created as a demo for Gradio and HuggingFace Spaces. Notebook [here](https://www.kaggle.com/code/mindgspl/ex2-type-of-ghost-image)" | |
examples = ['ghost_costume.jpg','ghost_symbol.jpg','ghost_real.jpg', 'test.png', 'test2.png','costume1.png', 'symbol.png','not-ghost-ex/other-04.png','not-ghost-ex/other-08.png', | |
'not-ghost-ex/other-13.png', | |
'not-ghost-ex/other-19.png', | |
'not-ghost-ex/other-24.png', | |
'not-ghost-ex/other-29.png', | |
'not-ghost-ex/other-34.png', | |
'not-ghost-ex/other-39.png'] | |
interpretation='default' | |
enable_queue=True | |
gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=4),title=title,description=description,examples=examples,interpretation=interpretation,enable_queue=enable_queue).launch() | |