mgrine commited on
Commit
79bdf70
·
verified ·
1 Parent(s): 0adbb5a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -51
app.py CHANGED
@@ -1,64 +1,80 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
2
  import gradio as gr
3
+ import pandas as pd
4
+ import re
5
 
6
+ # Sample DataFrame setup
7
+ df_clean = pd.read_csv("cleaned_data.csv")
8
+ df = df_clean[['text', 'price', 'location']].copy()
 
9
 
10
+ # Clean price column to ensure numeric
11
+ df['price'] = pd.to_numeric(df['price'], errors='coerce')
12
 
13
+ # Load Arabic language transformer (for future use or fine-tuning)
14
+ tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/AraT5-base")
15
+ model = AutoModelForSeq2SeqLM.from_pretrained("UBC-NLP/AraT5-base")
 
 
 
 
 
 
16
 
17
+ # Darija to MSA dictionary
18
+ darija_map = {
19
+ "bghit": "أريد", "karhba": "سيارة", "auto": "سيارة", "voiture": "سيارة", "f": "في",
20
+ "drahem": "مال", "kra": "إيجار", "souma": "سعر", "ta7t": "أقل من", "taht": "أقل من",
21
+ "ghalya": "غالية", "rkhisa": "رخيصة", "wahran": "وهران", "oran": "وهران", "alger": "الجزائر",
22
+ "dzayer": "الجزائر", "kayn": "يوجد", "chouf": "شاهد", "dir": "قم", "men": "من", "fi": "في",
23
+ "3andi": "عندي", "nheb": "أريد", "tsoum": "تكلفة", "chwiya": "قليل", "bzaaf": "كثير",
24
+ "mlih": "جيد", "marque": "ماركة", "modele": "موديل", "nif": "جديدة", "qdima": "قديمة"
25
+ }
26
 
27
+ # Translate Darija to Modern Standard Arabic (MSA)
28
+ def translate_darija_to_standard(text):
29
+ words = text.lower().split()
30
+ translated = [darija_map.get(word.strip(), word) for word in words]
31
+ return " ".join(translated)
32
 
33
+ # Simple rule-based query filter
34
+ def search_cars(query):
35
+ df_filtered = df.copy()
36
 
37
+ # Location filters
38
+ if "وهران" in query:
39
+ df_filtered = df_filtered[df_filtered['location'].str.contains("وهران", na=False)]
40
+ if "الجزائر" in query:
41
+ df_filtered = df_filtered[df_filtered['location'].str.contains("الجزائر", na=False)]
 
 
 
42
 
43
+ # Price filtering (regex for extracting numbers)
44
+ match = re.search(r"أقل من (\d+)", query)
45
+ if match:
46
+ try:
47
+ price_limit = int(match.group(1)) * 1000 # assuming input in million
48
+ df_filtered = df_filtered[df_filtered['price'] < price_limit]
49
+ except:
50
+ pass
51
 
52
+ return df_filtered.head(3).to_dict("records")
53
 
54
+ # Response Generator
55
+ def generate_response(user_input):
56
+ std_query = translate_darija_to_standard(user_input)
57
+ results = search_cars(std_query)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
+ if len(results) > 0:
60
+ response = f"🚗 Kayn {len(results)} 3roud li ykhdmouk:\n\n"
61
+ for i, car in enumerate(results, 1):
62
+ title = car['text']
63
+ price = int(car['price'])
64
+ city = car['location']
65
+ response += f"{i}. 🚙 {title}\n 💰 {price:,} DZD\n 📍 {city}\n"
66
+ response += "\n📩 T7eb nwarik kter?"
67
+ else:
68
+ response = "🫤 Ma l9it walou f had condition... Jرب بكلمات خرا wala souma okhra."
69
 
70
+ return response
71
+
72
+ # Gradio UI
73
+ gr.Interface(
74
+ fn=generate_response,
75
+ inputs="text",
76
+ outputs="text",
77
+ title="🚗 Chatbot Dziria - Car Market DZ",
78
+ description="S2l 3la sayarat b darija, ou chatbot ywarik l3roud 📊",
79
+ theme="default"
80
+ ).launch()