Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,80 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
top_p=top_p,
|
| 36 |
-
):
|
| 37 |
-
token = message.choices[0].delta.content
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
respond,
|
| 48 |
-
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
-
],
|
| 60 |
-
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
import gradio as gr
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import re
|
| 5 |
|
| 6 |
+
# Sample DataFrame setup
|
| 7 |
+
df_clean = pd.read_csv("cleaned_data.csv")
|
| 8 |
+
df = df_clean[['text', 'price', 'location']].copy()
|
|
|
|
| 9 |
|
| 10 |
+
# Clean price column to ensure numeric
|
| 11 |
+
df['price'] = pd.to_numeric(df['price'], errors='coerce')
|
| 12 |
|
| 13 |
+
# Load Arabic language transformer (for future use or fine-tuning)
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained("UBC-NLP/AraT5-base")
|
| 15 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("UBC-NLP/AraT5-base")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Darija to MSA dictionary
|
| 18 |
+
darija_map = {
|
| 19 |
+
"bghit": "أريد", "karhba": "سيارة", "auto": "سيارة", "voiture": "سيارة", "f": "في",
|
| 20 |
+
"drahem": "مال", "kra": "إيجار", "souma": "سعر", "ta7t": "أقل من", "taht": "أقل من",
|
| 21 |
+
"ghalya": "غالية", "rkhisa": "رخيصة", "wahran": "وهران", "oran": "وهران", "alger": "الجزائر",
|
| 22 |
+
"dzayer": "الجزائر", "kayn": "يوجد", "chouf": "شاهد", "dir": "قم", "men": "من", "fi": "في",
|
| 23 |
+
"3andi": "عندي", "nheb": "أريد", "tsoum": "تكلفة", "chwiya": "قليل", "bzaaf": "كثير",
|
| 24 |
+
"mlih": "جيد", "marque": "ماركة", "modele": "موديل", "nif": "جديدة", "qdima": "قديمة"
|
| 25 |
+
}
|
| 26 |
|
| 27 |
+
# Translate Darija to Modern Standard Arabic (MSA)
|
| 28 |
+
def translate_darija_to_standard(text):
|
| 29 |
+
words = text.lower().split()
|
| 30 |
+
translated = [darija_map.get(word.strip(), word) for word in words]
|
| 31 |
+
return " ".join(translated)
|
| 32 |
|
| 33 |
+
# Simple rule-based query filter
|
| 34 |
+
def search_cars(query):
|
| 35 |
+
df_filtered = df.copy()
|
| 36 |
|
| 37 |
+
# Location filters
|
| 38 |
+
if "وهران" in query:
|
| 39 |
+
df_filtered = df_filtered[df_filtered['location'].str.contains("وهران", na=False)]
|
| 40 |
+
if "الجزائر" in query:
|
| 41 |
+
df_filtered = df_filtered[df_filtered['location'].str.contains("الجزائر", na=False)]
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
+
# Price filtering (regex for extracting numbers)
|
| 44 |
+
match = re.search(r"أقل من (\d+)", query)
|
| 45 |
+
if match:
|
| 46 |
+
try:
|
| 47 |
+
price_limit = int(match.group(1)) * 1000 # assuming input in million
|
| 48 |
+
df_filtered = df_filtered[df_filtered['price'] < price_limit]
|
| 49 |
+
except:
|
| 50 |
+
pass
|
| 51 |
|
| 52 |
+
return df_filtered.head(3).to_dict("records")
|
| 53 |
|
| 54 |
+
# Response Generator
|
| 55 |
+
def generate_response(user_input):
|
| 56 |
+
std_query = translate_darija_to_standard(user_input)
|
| 57 |
+
results = search_cars(std_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
+
if len(results) > 0:
|
| 60 |
+
response = f"🚗 Kayn {len(results)} 3roud li ykhdmouk:\n\n"
|
| 61 |
+
for i, car in enumerate(results, 1):
|
| 62 |
+
title = car['text']
|
| 63 |
+
price = int(car['price'])
|
| 64 |
+
city = car['location']
|
| 65 |
+
response += f"{i}. 🚙 {title}\n 💰 {price:,} DZD\n 📍 {city}\n"
|
| 66 |
+
response += "\n📩 T7eb nwarik kter?"
|
| 67 |
+
else:
|
| 68 |
+
response = "🫤 Ma l9it walou f had condition... Jرب بكلمات خرا wala souma okhra."
|
| 69 |
|
| 70 |
+
return response
|
| 71 |
+
|
| 72 |
+
# Gradio UI
|
| 73 |
+
gr.Interface(
|
| 74 |
+
fn=generate_response,
|
| 75 |
+
inputs="text",
|
| 76 |
+
outputs="text",
|
| 77 |
+
title="🚗 Chatbot Dziria - Car Market DZ",
|
| 78 |
+
description="S2l 3la sayarat b darija, ou chatbot ywarik l3roud 📊",
|
| 79 |
+
theme="default"
|
| 80 |
+
).launch()
|