Spaces:
Running
Running
import gradio as gr | |
import requests | |
from bs4 import BeautifulSoup | |
from urllib.parse import urljoin | |
from gradio_client import Client | |
import json | |
import csv | |
import pandas | |
import groq | |
import os | |
api_key = os.environ.get('groq') | |
read_key = os.environ.get('HF_TOKEN', None) | |
client = groq.Client(api_key=api_key) | |
# Use Llama 3 70B powered by Groq for answering | |
def ask_llm(ort): | |
try: | |
completion = client.chat.completions.create( | |
model="llama3-70b-8192", | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant."}, | |
{"role": "user", "content": f"{ort}. \n instruction: antworte kurz und knapp. antworte immer auf deutsch"} | |
], | |
) | |
return completion.choices[0].message.content | |
except Exception as e: | |
return f"Error in response generation: {str(e)}" | |
def parse_links_and_content(ort): | |
base_url = "https://vereine-in-deutschland.net" | |
all_links = [] | |
all_links_text = [] | |
initial_url = f"{base_url}/vereine/Bayern/{ort}" | |
try: | |
response = requests.get(initial_url) | |
response.raise_for_status() # Überprüfen, ob die Anfrage erfolgreich war | |
# Parse the HTML content using BeautifulSoup | |
soup = BeautifulSoup(response.content, 'html.parser') | |
# Ermittle die letzte Seite | |
link_element = soup.select_one('li.page-item:nth-child(8) > a:nth-child(1)') | |
if link_element and 'href' in link_element.attrs: | |
href = link_element['href'] | |
# Extrahiere die letzten beiden Zeichen der URL | |
last_two_chars = href[-2:].strip() | |
# Konvertiere die letzten beiden Zeichen in einen Integer | |
last_two_chars_int = int(last_two_chars) | |
print(last_two_chars_int) | |
else: | |
last_two_chars_int = 10 # Falls die letzte Seite nicht gefunden wird, nimm an, dass es nur eine Seite gibt | |
# Schleife durch alle Seiten und sammle Links | |
for page_number in range(1, last_two_chars_int +1): | |
page_url = f"{base_url}/vereine/Bayern/{ort}/p/{page_number}" | |
response = requests.get(page_url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
target_div = soup.select_one('div.row-cols-1:nth-child(4)') | |
if target_div: | |
links = [urljoin(base_url, a['href']) for a in target_div.find_all('a', href=True)] | |
texts = [a.text for a in target_div.find_all('a', href=True)] | |
#print(texts) | |
all_links.extend(links) | |
all_links_text.extend(texts) | |
else: | |
print(f"Target div not found on page {page_number}") | |
except Exception as e: | |
return str(e), [] | |
all_links = all_links[0::2] | |
all_links_text = all_links_text[0::2] | |
return all_links_text, all_links | |
def scrape_links(links): | |
links=links | |
contact_details= [] | |
client = Client("mgokg/PerplexicaApi") | |
for verein in links: | |
result = client.predict( | |
prompt=f"{verein}", | |
api_name="/parse_links" | |
) | |
#print(result) | |
contact_details.append(result) | |
return contact_details | |
# Speichere die JSON-Daten in eine CSV-Datei | |
def save_to_csv(data, filename): | |
keys = data[0].keys() | |
with open(filename, 'w', newline='', encoding='utf-8') as output_file: | |
dict_writer = csv.DictWriter(output_file, fieldnames=keys) | |
dict_writer.writeheader() | |
dict_writer.writerows(data) | |
# Erstelle die Gradio-Schnittstelle | |
with gr.Blocks() as demo: | |
gr.Markdown("# ") | |
with gr.Row(): | |
ort_input = gr.Textbox(label="Ort", placeholder="Gib den Namen des Ortes ein") | |
with gr.Row(): | |
links_output = gr.Textbox(label="Antwort") | |
rechts_output = gr.Textbox(label="Antwort") | |
#links_output = gr.DataFrame(label="Ergebnisse") | |
#json_output = gr.JSON(label="Ergebnisse") | |
def process_ort(ort): | |
#antwort = ask_llm(ort) | |
#antwort=gr.Markdown() | |
#return antwort | |
links = parse_links_and_content(ort) | |
return links | |
contact= scrape_links(links) | |
json_data = [json.loads(item) for item in contact] | |
#save_to_csv(json_data, './contact_details.csv') | |
#return f"[Download CSV](contact_details.csv)", json_data | |
#return json_data | |
#return contact | |
return json_data, links | |
#return json_data | |
# Button zum Starten der Parsung | |
button = gr.Button("senden") | |
# Verbinde den Button mit der Funktion | |
button.click(fn=parse_links_and_content, inputs=ort_input, outputs=[links_output, rechts_output]) | |
# Starte die Gradio-Anwendung | |
demo.launch() | |