mgoin's picture
Update app.py
24e1981 verified
raw
history blame
3.5 kB
import os
import uuid
import gradio as gr
# import spaces
import torch
from transformers import AutoTokenizer
from vllm import AsyncLLMEngine, AsyncEngineArgs, SamplingParams
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# NM vLLM Hermes Mistral Chat
"""
if not torch.cuda.is_available():
raise ValueError("Running on CPU 🥶 This demo does not work on CPU.")
model_id = "neuralmagic/OpenHermes-2.5-Mistral-7B-pruned50"
engine_args = AsyncEngineArgs(model=model_id, sparsity="sparse_w16a16", max_model_len=MAX_INPUT_TOKEN_LENGTH)
engine = AsyncLLMEngine.from_engine_args(engine_args)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# @spaces.GPU
async def generate(
message: str,
chat_history: list[tuple[str, str]],
system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
conversation = []
if system_prompt:
conversation.append({"role": "system", "content": system_prompt})
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
sampling_params = SamplingParams(
max_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
temperature=temperature,
repetition_penalty=repetition_penalty,
)
stream = await engine.add_request(uuid.uuid4().hex, formatted_conversation, sampling_params)
async for request_output in stream:
text = request_output.outputs[0].text
yield text
chat_interface = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Textbox(label="System prompt", lines=6),
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.6,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.9,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=50,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.2,
),
],
stop_btn=None,
examples=[
["Hello there! How are you doing?"],
["Can you explain briefly to me what is the Python programming language?"],
["Explain the plot of Cinderella in a sentence."],
["How many hours does it take a man to eat a Helicopter?"],
["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
if __name__ == "__main__":
demo.queue(max_size=20).launch()