Modified reverted changes
Browse files- obj_pronouns.txt β addon_words.txt +5 -1
- app.py +43 -49
- profanities.json +6 -6
- lookup_words.txt β similar_words.txt +0 -0
obj_pronouns.txt β addon_words.txt
RENAMED
@@ -7,4 +7,8 @@ ninyo
|
|
7 |
nila
|
8 |
ka
|
9 |
nyo
|
10 |
-
ng
|
|
|
|
|
|
|
|
|
|
7 |
nila
|
8 |
ka
|
9 |
nyo
|
10 |
+
ng
|
11 |
+
an
|
12 |
+
am
|
13 |
+
napaka
|
14 |
+
paka
|
app.py
CHANGED
@@ -16,8 +16,8 @@ API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-pro
|
|
16 |
headers = {"Authorization": "Bearer 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"}
|
17 |
|
18 |
def query(text):
|
19 |
-
|
20 |
-
response = requests.post(API_URL, headers=headers, json=
|
21 |
return response.json()
|
22 |
|
23 |
def read_text(filename, filetype='txt'):
|
@@ -35,21 +35,32 @@ def read_text(filename, filetype='txt'):
|
|
35 |
|
36 |
|
37 |
contractions = read_text('contractions', 'json')
|
38 |
-
|
39 |
-
|
40 |
profanities = read_text('profanities', 'json')
|
41 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
|
|
42 |
eng_words = list(set(words.words()) - set(lookup_profanity))
|
43 |
|
44 |
# TODO check eng words that are tagalog profanities
|
45 |
|
46 |
def fuzzy_lookup(tweet):
|
47 |
|
48 |
-
matched_profanity =
|
49 |
|
50 |
for word in tweet.split():
|
|
|
|
|
|
|
51 |
if word in eng_words:
|
52 |
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
scores = []
|
54 |
matched_words = []
|
55 |
word = word.strip(punctuation)
|
@@ -65,27 +76,9 @@ def fuzzy_lookup(tweet):
|
|
65 |
if len(scores) > 0:
|
66 |
max_score_index = np.argmax(scores)
|
67 |
if matched_words[max_score_index] in lookup_profanity:
|
68 |
-
matched_profanity
|
69 |
|
70 |
-
|
71 |
-
for word, profanity in matched_profanity.items():
|
72 |
-
word_split = word.split(profanity[-2:])
|
73 |
-
for pronoun in obj_pronouns:
|
74 |
-
if len(word_split) > 1:
|
75 |
-
if pronoun == word_split[-1]:
|
76 |
-
matched_profanity[word] = profanity + ' ' + pronoun
|
77 |
-
break
|
78 |
-
|
79 |
-
# Replace each profanities by fuzzy lookup result
|
80 |
-
for word, profanity in matched_profanity.items():
|
81 |
-
tweet = tweet.replace(word, profanity)
|
82 |
-
|
83 |
-
for profanity, prof_varations in profanities.items():
|
84 |
-
if len(prof_varations) > 0:
|
85 |
-
for prof_variant in prof_varations:
|
86 |
-
tweet = tweet.replace(prof_variant, profanity)
|
87 |
-
|
88 |
-
return tweet, matched_profanity
|
89 |
|
90 |
|
91 |
def preprocess(tweet):
|
@@ -112,44 +105,40 @@ def preprocess(tweet):
|
|
112 |
# Combine list of words back to sentence
|
113 |
preprocessed_tweet = ' '.join(filter(None, row_split))
|
114 |
|
115 |
-
# Fuzzy Lookup
|
116 |
-
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet)
|
117 |
-
|
118 |
if len(preprocessed_tweet.split()) == 1:
|
119 |
-
return preprocessed_tweet
|
120 |
|
121 |
# Expand Contractions
|
122 |
for i in contractions.items():
|
123 |
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
|
124 |
|
125 |
-
return preprocessed_tweet
|
126 |
|
127 |
|
128 |
|
129 |
def predict(tweet):
|
130 |
|
131 |
-
preprocessed_tweet
|
|
|
132 |
|
133 |
-
|
134 |
|
135 |
-
|
136 |
-
print(prediction)
|
137 |
-
error_message = prediction['error']
|
138 |
-
return error_message
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
print("DETECTED PROFANITY:", matched_profanity)
|
150 |
-
print("LABELS:", prediction, "\n")
|
151 |
|
152 |
-
|
|
|
|
|
153 |
|
154 |
|
155 |
demo = gr.Interface(
|
@@ -157,13 +146,18 @@ demo = gr.Interface(
|
|
157 |
|
158 |
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
|
159 |
|
160 |
-
outputs=[gr.components.
|
161 |
|
162 |
examples=['Tangina mo naman sobrang yabang mo gago!!π π€ @davidrafael',
|
163 |
'Napakainit ngayong araw pakshet namaaan!!',
|
164 |
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
|
165 |
'Bobo ka ba? napakadali lang nyan eh... π€‘',
|
166 |
'Uy gago laptrip yung nangyare samen kanina HAHAHAππ'],
|
|
|
|
|
|
|
|
|
167 |
)
|
168 |
|
169 |
-
demo.launch(debug=True)
|
|
|
|
16 |
headers = {"Authorization": "Bearer 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"}
|
17 |
|
18 |
def query(text):
|
19 |
+
payload = {"inputs": text}
|
20 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
21 |
return response.json()
|
22 |
|
23 |
def read_text(filename, filetype='txt'):
|
|
|
35 |
|
36 |
|
37 |
contractions = read_text('contractions', 'json')
|
38 |
+
similar_words = read_text('similar_words')
|
39 |
+
addon_words = read_text('addon_words')
|
40 |
profanities = read_text('profanities', 'json')
|
41 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
42 |
+
lookup_words = list(set(similar_words).union(set(lookup_profanity.tolist())))
|
43 |
eng_words = list(set(words.words()) - set(lookup_profanity))
|
44 |
|
45 |
# TODO check eng words that are tagalog profanities
|
46 |
|
47 |
def fuzzy_lookup(tweet):
|
48 |
|
49 |
+
matched_profanity = []
|
50 |
|
51 |
for word in tweet.split():
|
52 |
+
|
53 |
+
base_word = word
|
54 |
+
|
55 |
if word in eng_words:
|
56 |
continue
|
57 |
+
|
58 |
+
for addon in addon_words:
|
59 |
+
if word.startswith(addon):
|
60 |
+
word[len(addon):]
|
61 |
+
if word.endswith(addon):
|
62 |
+
word[:-len(addon)]
|
63 |
+
|
64 |
scores = []
|
65 |
matched_words = []
|
66 |
word = word.strip(punctuation)
|
|
|
76 |
if len(scores) > 0:
|
77 |
max_score_index = np.argmax(scores)
|
78 |
if matched_words[max_score_index] in lookup_profanity:
|
79 |
+
matched_profanity.append(base_word)
|
80 |
|
81 |
+
return matched_profanity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
def preprocess(tweet):
|
|
|
105 |
# Combine list of words back to sentence
|
106 |
preprocessed_tweet = ' '.join(filter(None, row_split))
|
107 |
|
|
|
|
|
|
|
108 |
if len(preprocessed_tweet.split()) == 1:
|
109 |
+
return preprocessed_tweet
|
110 |
|
111 |
# Expand Contractions
|
112 |
for i in contractions.items():
|
113 |
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
|
114 |
|
115 |
+
return preprocessed_tweet
|
116 |
|
117 |
|
118 |
|
119 |
def predict(tweet):
|
120 |
|
121 |
+
preprocessed_tweet = preprocess(tweet)
|
122 |
+
matched_profanity = fuzzy_lookup(preprocessed_tweet)
|
123 |
|
124 |
+
if len(matched_profanity) > 0:
|
125 |
|
126 |
+
prediction = query(preprocessed_tweet)
|
|
|
|
|
|
|
127 |
|
128 |
+
if type(prediction) == dict:
|
129 |
+
print(prediction)
|
130 |
+
error_message = prediction['error']
|
131 |
+
return error_message, [[]]
|
132 |
|
133 |
+
prediction = prediction[0][0]["label"]
|
134 |
+
|
135 |
+
print("\nTWEET:", tweet)
|
136 |
+
print("DETECTED PROFANITY:", matched_profanity)
|
137 |
+
print("LABEL:", prediction, "\n")
|
|
|
|
|
138 |
|
139 |
+
return prediction, [matched_profanity]
|
140 |
+
|
141 |
+
return "No Profanity", [[]]
|
142 |
|
143 |
|
144 |
demo = gr.Interface(
|
|
|
146 |
|
147 |
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
|
148 |
|
149 |
+
outputs=[gr.components.Text(label="PREDICTION"), gr.List(label="PROFANITIES")],
|
150 |
|
151 |
examples=['Tangina mo naman sobrang yabang mo gago!!π π€ @davidrafael',
|
152 |
'Napakainit ngayong araw pakshet namaaan!!',
|
153 |
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
|
154 |
'Bobo ka ba? napakadali lang nyan eh... π€‘',
|
155 |
'Uy gago laptrip yung nangyare samen kanina HAHAHAππ'],
|
156 |
+
|
157 |
+
allow_flagging="never",
|
158 |
+
|
159 |
+
title="Tagalog Profanity Classifier"
|
160 |
)
|
161 |
|
162 |
+
demo.launch(debug=True)
|
163 |
+
predict("Tangina mo naman gag0 ka ba")
|
profanities.json
CHANGED
@@ -1,16 +1,16 @@
|
|
1 |
{
|
2 |
-
"bobo": ["
|
3 |
-
"bwiset": ["buwesit", "buwiset"],
|
4 |
-
"gago": ["gaga", "g@g0"
|
5 |
"kupal": [],
|
6 |
-
"pakshet": [],
|
7 |
"pakyu": [],
|
8 |
"pucha": [],
|
9 |
"punyeta": [],
|
10 |
"puta": ["pota"],
|
11 |
"putangina": ["pukingina", "kinangina", "putang"],
|
12 |
"tanga": [],
|
13 |
-
"tangina": ["tangna", "inamo"],
|
14 |
-
"tarantado": ["
|
15 |
"ulol": ["ul0l", "olol", "0lol"]
|
16 |
}
|
|
|
1 |
{
|
2 |
+
"bobo": ["bobobo", "b0b0"],
|
3 |
+
"bwiset": ["buwesit", "buwiset", "bwisit"],
|
4 |
+
"gago": ["gaga", "g@g0"],
|
5 |
"kupal": [],
|
6 |
+
"pakshet": ["pakshit"],
|
7 |
"pakyu": [],
|
8 |
"pucha": [],
|
9 |
"punyeta": [],
|
10 |
"puta": ["pota"],
|
11 |
"putangina": ["pukingina", "kinangina", "putang"],
|
12 |
"tanga": [],
|
13 |
+
"tangina": ["tangna", "inamo", "tatanga"],
|
14 |
+
"tarantado": ["t4r4nt4do", "t@r@nt@do"],
|
15 |
"ulol": ["ul0l", "olol", "0lol"]
|
16 |
}
|
lookup_words.txt β similar_words.txt
RENAMED
File without changes
|