Added english words lookup
Browse files- app.py +6 -3
- requirements.txt +1 -0
app.py
CHANGED
@@ -7,7 +7,9 @@ from thefuzz import process, fuzz
|
|
7 |
import numpy as np
|
8 |
import re
|
9 |
from string import punctuation
|
10 |
-
import
|
|
|
|
|
11 |
|
12 |
|
13 |
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
|
@@ -36,8 +38,8 @@ contractions = read_text('contractions', 'json')
|
|
36 |
lookup_words = read_text('lookup_words')
|
37 |
obj_pronouns = read_text('obj_pronouns')
|
38 |
profanities = read_text('profanities', 'json')
|
|
|
39 |
|
40 |
-
loading_countdown = 0
|
41 |
|
42 |
def fuzzy_lookup(tweet):
|
43 |
|
@@ -45,6 +47,8 @@ def fuzzy_lookup(tweet):
|
|
45 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
46 |
|
47 |
for word in tweet.split():
|
|
|
|
|
48 |
scores = []
|
49 |
matched_words = []
|
50 |
word = word.strip(punctuation)
|
@@ -121,7 +125,6 @@ def preprocess(tweet):
|
|
121 |
|
122 |
|
123 |
def predict(tweet):
|
124 |
-
global loading_countdown
|
125 |
|
126 |
preprocessed_tweet, matched_profanity = preprocess(tweet)
|
127 |
|
|
|
7 |
import numpy as np
|
8 |
import re
|
9 |
from string import punctuation
|
10 |
+
import nltk
|
11 |
+
nltk.download('words')
|
12 |
+
from nltk.corpus import words
|
13 |
|
14 |
|
15 |
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
|
|
|
38 |
lookup_words = read_text('lookup_words')
|
39 |
obj_pronouns = read_text('obj_pronouns')
|
40 |
profanities = read_text('profanities', 'json')
|
41 |
+
eng_words = set(words.words())
|
42 |
|
|
|
43 |
|
44 |
def fuzzy_lookup(tweet):
|
45 |
|
|
|
47 |
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
|
48 |
|
49 |
for word in tweet.split():
|
50 |
+
if word in eng_words:
|
51 |
+
break
|
52 |
scores = []
|
53 |
matched_words = []
|
54 |
word = word.strip(punctuation)
|
|
|
125 |
|
126 |
|
127 |
def predict(tweet):
|
|
|
128 |
|
129 |
preprocessed_tweet, matched_profanity = preprocess(tweet)
|
130 |
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
emoji
|
2 |
thefuzz[speedup]
|
3 |
numpy
|
|
|
|
1 |
emoji
|
2 |
thefuzz[speedup]
|
3 |
numpy
|
4 |
+
nltk
|