mginoben's picture
Modified app.py
d4078c2
raw
history blame
5.98 kB
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np
import re
import nltk
nltk.download('words')
from nltk.corpus import words
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
headers = {"Authorization": "Bearer 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"}
def query(text):
payload = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def read_text(filename, filetype='txt'):
words = []
if filetype == 'txt':
with open(filename + '.txt') as file:
words = [line.rstrip() for line in file]
words = list(set(words))
elif filetype == 'json':
with open(filename + '.json') as json_file:
words = json.load(json_file)
return words
contractions = read_text('contractions', 'json')
similar_words = read_text('similar_words')
addon_words = read_text('addon_words')
profanities_dict = read_text('profanities', 'json')
lookup_profanity = np.concatenate([np.hstack(list(profanities_dict.values())), list(profanities_dict.keys())]).tolist()
lookup_words = list(set(similar_words).union(set(lookup_profanity)))
eng_words = list(set(words.words()) - set(lookup_profanity))
punctuations = re.compile(r'^[^\w#@]+|[^\w#@]+$')
def fuzzy_lookup(tweet):
matched_profanity = dict()
for word in tweet.split():
if word in eng_words:
continue
scores = []
matched_words = []
matched_word = None
# Remove trailing punctuations except # and @
word = punctuations.sub('', word).lower()
# Save base word
base_word = word
# Shortent elongated word
word = re.sub(r'(.)\1{2,}', r'\1', word)
# Remove # and @
if word.startswith("#") or word.startswith("@"):
word = word[1:]
# Remove trailing words (mo, ka, pinaka)
for addon in addon_words:
if word.startswith(addon):
word = word[len(addon):]
if word.endswith(addon):
word = word[:-len(addon)]
if len(word) < 4:
continue
# Get fuzzy ratio
for lookup_word in lookup_words:
score = fuzz.ratio(word, lookup_word)
# Threshold
if score >= 70:
scores.append(score)
matched_words.append(lookup_word)
if len(scores) == 0:
continue
if len(set(scores)) == 1:
for matched_word in matched_words:
if matched_word in lookup_profanity:
matched_word = matched_word
break
else:
# Get matched word with max score
max_score_index = np.argmax(scores)
matched_word = matched_words[max_score_index]
if matched_word not in lookup_profanity:
continue
for base_profanity, profanity_variations in profanities_dict.items():
if matched_word in profanity_variations or matched_word == base_profanity:
# Seperate pronouns
for addon in addon_words:
if base_word.endswith(addon):
base_profanity = base_profanity + " " + addon
break
matched_profanity[base_word] = base_profanity
break
return matched_profanity
def preprocess(tweet, profanities):
tweet = tweet.lower()
tweet = emoji.replace_emoji(tweet, replace='')
# Replace profanities
for base_word, matched_word in profanities.items():
tweet = tweet.replace(base_word, matched_word)
# Elongated words conversion
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
row_split = tweet.split()
for index, word in enumerate(row_split):
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Combine list of words back to sentence
preprocessed_tweet = ' '.join(filter(None, row_split))
if len(preprocessed_tweet.split()) == 1:
return preprocessed_tweet
# Expand Contractions
for i in contractions.items():
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
return preprocessed_tweet
def predict(tweet):
profanities = fuzzy_lookup(tweet)
if len(profanities) > 0:
preprocessed_tweet = preprocess(tweet, profanities)
prediction = query(preprocessed_tweet)
if type(prediction) == dict:
print(prediction)
error_message = prediction['error']
return error_message, {}
prediction = prediction[0][0]["label"]
print("\nTWEET:", tweet)
print("PROCESSED TWEET:", preprocessed_tweet)
print("DETECTED PROFANITY:", list(profanities.keys()))
print("LABEL:", prediction, "\n")
return prediction, list(profanities.keys())
return "No Profanity", {}
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Text(label="PREDICTION"), gr.JSON(label="PROFANITIES")],
examples=['Tangina mo naman sobrang yabang mo gago!!๐Ÿ˜ ๐Ÿ˜ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐Ÿคก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐Ÿ˜‚๐Ÿ˜‚'],
allow_flagging="never",
title="Tagalog Profanity Classifier"
)
demo.launch(debug=True)