mginoben's picture
Reprogrammed app.
7a70c71
raw
history blame
6.58 kB
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np
import re
from string import punctuation
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
headers = {"Authorization": "Bearer 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"}
def read_text(filename, filetype='txt'):
words = []
if filetype == 'txt':
with open(filename + '.txt') as file:
words = [line.rstrip() for line in file]
words = list(set(words))
elif filetype == 'json':
with open(filename + '.json') as json_file:
words = json.load(json_file)
return words
contractions = read_text('contractions', 'json')
lookup_words = read_text('lookup_words')
obj_pronouns = read_text('obj_pronouns')
profanities = read_text('profanities', 'json')
def query(text):
text = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=text)
return response.json()
# for profanity in profanities:
# print(profanity, process.extractOne(profanity, tweet.split(), scorer=fuzz.ratio))
def fuzzy_lookup(tweet):
matched_profanity = dict()
# Convert Profanity Dict to List
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
# Loop each word in tweet
for word in tweet.split():
scores = []
matched_words = []
# Remove punctuations
word = word.strip(punctuation)
# Only get digits and letters then lowercase
processed_word = re.sub("[^a-zA-Z0-9@]", "", word)
# If word > 4 chars
if len(processed_word) >= 4:
# Get fuzzy ratio
for lookup_word in lookup_words:
score = fuzz.ratio(processed_word, lookup_word)
if score >= 70:
scores.append(score)
matched_words.append(lookup_word)
if len(scores) > 0:
max_score_index = np.argmax(scores)
if matched_words[max_score_index] in lookup_profanity:
matched_profanity[word] = matched_words[max_score_index]
for word, profanity in matched_profanity.items():
word_split = word.split(profanity[-2:])
for pronoun in obj_pronouns:
if len(word_split) > 1:
if pronoun == word_split[-1]:
matched_profanity[word] = matched_profanity + ' ' + pronoun
break
# Replace each profanities by fuzzy lookup result
for word, profanity in matched_profanity.items():
tweet = tweet.replace(word, profanity)
for profanity, prof_varations in profanities.items():
if len(prof_varations) > 0:
for prof_variant in prof_varations:
tweet = tweet.replace(prof_variant, profanity)
return tweet, matched_profanity
def preprocess(tweet):
# Lowercase
tweet = tweet.lower()
# Remove emojis
tweet = emoji.replace_emoji(tweet, replace='')
# Replace elongated words 'grabeee' -> 'grabe' (not applicable on 2 corresponding letter)
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
# Split sentence into list of words
row_split = tweet.split()
for index, word in enumerate(row_split):
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Combine list of words back to sentence
preprocessed_tweet = ' '.join(filter(None, row_split))
# Check if output contains single word then return null
if len(preprocessed_tweet.split()) == 1:
return preprocessed_tweet
# Expand Contractions
for i in contractions.items():
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
# Fuzzy Lookup
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet)
return preprocessed_tweet, matches
def predict(tweet):
preprocessed_tweet, matched_profanity = preprocess(tweet)
prediction = query(preprocessed_tweet)
if type(prediction) is dict:
return "Model is still loading. Try again."
if bool(matched_profanity) == False:
return "No profanity found."
prediction = [tuple(i.values()) for i in prediction[0]]
prediction = dict((x, y) for x, y in prediction)
print("\n", tweet)
print(matched_profanity)
print(prediction, "\n")
return prediction
# # def predict(tweet):
# # fuzzy_text, matches = fuzzy_lookup(tweet)
# # processed_text = preprocess(fuzzy_text)
# # output = query(processed_text)
# # if 'error' in output:
# # return output['error'], 'Error occured. Try again later.', {}
# # elif len(matches) == 0:
# # return 'No Profanity Found.', '', {}
# # else:
# # output = [tuple(i.values()) for i in output[0]]
# # output = dict((x, y) for x, y in output)
# # predicted_label = list(output.keys())[0]
# # if predicted_label == 'Abusive':
# # # Censor
# # for base_word, _ in matches.items():
# # mask = '*' * len(base_word)
# # compiled = re.compile(re.escape(base_word), re.IGNORECASE)
# # tweet = compiled.sub(mask, tweet)
# # # tweet = tweet.replace(base_word, re.sub("[a-zA-Z0-9@]", "*", base_word))
# # return output, tweet, json.dumps(matches)
# # else:
# # return output, tweet, json.dumps(matches)
# # # output, tweet, matches = predict('ul0L Sama ng ugali mo pre Tangina uL0l!!!')
# # # print(output, '\n', tweet, '\n', matches)
# # hf_writer = gr.HuggingFaceDatasetSaver('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', 'tagalog-profanity-feedbacks')
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")],
examples=['Tangina mo naman sobrang yabang mo gago!!๐Ÿ˜ ๐Ÿ˜ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐Ÿคก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐Ÿ˜‚๐Ÿ˜‚'],
)
demo.launch()