mginoben's picture
Fixed profanities in english lookup words
33125f0
raw
history blame
5.13 kB
import gradio as gr
import requests
import emoji
import re
import json
from thefuzz import process, fuzz
import numpy as np
import re
from string import punctuation
import nltk
nltk.download('words')
from nltk.corpus import words
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection"
headers = {"Authorization": "Bearer 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"}
def query(text):
text = {"inputs": text}
response = requests.post(API_URL, headers=headers, json=text)
return response.json()
def read_text(filename, filetype='txt'):
words = []
if filetype == 'txt':
with open(filename + '.txt') as file:
words = [line.rstrip() for line in file]
words = list(set(words))
elif filetype == 'json':
with open(filename + '.json') as json_file:
words = json.load(json_file)
return words
contractions = read_text('contractions', 'json')
lookup_words = read_text('lookup_words')
obj_pronouns = read_text('obj_pronouns')
profanities = read_text('profanities', 'json')
eng_words = set(words.words())
# TODO check eng words that are tagalog profanities
def fuzzy_lookup(tweet):
matched_profanity = dict()
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())])
for word in tweet.split():
if word in list(set(eng_words) - set(lookup_profanity)):
break
scores = []
matched_words = []
word = word.strip(punctuation)
processed_word = re.sub("[^a-zA-Z0-9@]", "", word)
if len(processed_word) >= 4:
# Get fuzzy ratio
for lookup_word in lookup_words:
score = fuzz.ratio(processed_word, lookup_word)
if score >= 70:
scores.append(score)
matched_words.append(lookup_word)
if len(scores) > 0:
max_score_index = np.argmax(scores)
if matched_words[max_score_index] in lookup_profanity:
matched_profanity[word] = matched_words[max_score_index]
# Expand Pronouns in Profanities
for word, profanity in matched_profanity.items():
word_split = word.split(profanity[-2:])
for pronoun in obj_pronouns:
if len(word_split) > 1:
if pronoun == word_split[-1]:
matched_profanity[word] = profanity + ' ' + pronoun
break
# Replace each profanities by fuzzy lookup result
for word, profanity in matched_profanity.items():
tweet = tweet.replace(word, profanity)
for profanity, prof_varations in profanities.items():
if len(prof_varations) > 0:
for prof_variant in prof_varations:
tweet = tweet.replace(prof_variant, profanity)
return tweet, matched_profanity
def preprocess(tweet):
tweet = tweet.lower()
tweet = emoji.replace_emoji(tweet, replace='')
# Elongated words conversion
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet)
row_split = tweet.split()
for index, word in enumerate(row_split):
# Remove links
if 'http' in word:
row_split[index] = ''
# Unify laugh texts format to 'haha'
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha']
if any(x in word for x in laugh_texts):
row_split[index] = 'haha'
# Combine list of words back to sentence
preprocessed_tweet = ' '.join(filter(None, row_split))
# Fuzzy Lookup
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet)
if len(preprocessed_tweet.split()) == 1:
return preprocessed_tweet, matches
# Expand Contractions
for i in contractions.items():
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet)
return preprocessed_tweet, matches
def predict(tweet):
preprocessed_tweet, matched_profanity = preprocess(tweet)
prediction = query(preprocessed_tweet)
if type(prediction) == dict:
print(prediction)
error_message = prediction['error']
return error_message
if bool(matched_profanity) == False:
return "No Profanity"
prediction = [tuple(i.values()) for i in prediction[0]]
prediction = dict((x, y) for x, y in prediction)
print("\nTWEET:", tweet)
print("DETECTED PROFANITY:", matched_profanity)
print("LABELS:", prediction, "\n")
return prediction
demo = gr.Interface(
fn=predict,
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')],
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")],
examples=['Tangina mo naman sobrang yabang mo gago!!๐Ÿ˜ ๐Ÿ˜ค @davidrafael',
'Napakainit ngayong araw pakshet namaaan!!',
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO',
'Bobo ka ba? napakadali lang nyan eh... ๐Ÿคก',
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐Ÿ˜‚๐Ÿ˜‚'],
)
demo.launch(debug=True)