|
import gradio as gr |
|
import requests |
|
import emoji |
|
import re |
|
import json |
|
from thefuzz import process, fuzz |
|
import numpy as np |
|
import re |
|
from string import punctuation |
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/Dabid/abusive-tagalog-profanity-detection" |
|
headers = {"Authorization": "Bearer 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"} |
|
|
|
def query(text): |
|
text = {"inputs": text} |
|
response = requests.post(API_URL, headers=headers, json=text) |
|
return response.json() |
|
|
|
def read_text(filename, filetype='txt'): |
|
words = [] |
|
|
|
if filetype == 'txt': |
|
with open(filename + '.txt') as file: |
|
words = [line.rstrip() for line in file] |
|
words = list(set(words)) |
|
elif filetype == 'json': |
|
with open(filename + '.json') as json_file: |
|
words = json.load(json_file) |
|
|
|
return words |
|
|
|
|
|
contractions = read_text('contractions', 'json') |
|
lookup_words = read_text('lookup_words') |
|
obj_pronouns = read_text('obj_pronouns') |
|
profanities = read_text('profanities', 'json') |
|
|
|
|
|
|
|
|
|
|
|
|
|
def fuzzy_lookup(tweet): |
|
|
|
matched_profanity = dict() |
|
|
|
|
|
lookup_profanity = np.concatenate([np.hstack(list(profanities.values())), list(profanities.keys())]) |
|
|
|
|
|
for word in tweet.split(): |
|
scores = [] |
|
matched_words = [] |
|
|
|
|
|
word = word.strip(punctuation) |
|
|
|
|
|
processed_word = re.sub("[^a-zA-Z0-9@]", "", word) |
|
|
|
|
|
if len(processed_word) >= 4: |
|
|
|
for lookup_word in lookup_words: |
|
score = fuzz.ratio(processed_word, lookup_word) |
|
if score >= 70: |
|
scores.append(score) |
|
matched_words.append(lookup_word) |
|
if len(scores) > 0: |
|
max_score_index = np.argmax(scores) |
|
if matched_words[max_score_index] in lookup_profanity: |
|
matched_profanity[word] = matched_words[max_score_index] |
|
|
|
for word, profanity in matched_profanity.items(): |
|
word_split = word.split(profanity[-2:]) |
|
for pronoun in obj_pronouns: |
|
if len(word_split) > 1: |
|
if pronoun == word_split[-1]: |
|
matched_profanity[word] = profanity + ' ' + pronoun |
|
break |
|
|
|
|
|
for word, profanity in matched_profanity.items(): |
|
tweet = tweet.replace(word, profanity) |
|
|
|
for profanity, prof_varations in profanities.items(): |
|
if len(prof_varations) > 0: |
|
for prof_variant in prof_varations: |
|
tweet = tweet.replace(prof_variant, profanity) |
|
|
|
return tweet, matched_profanity |
|
|
|
|
|
def preprocess(tweet): |
|
|
|
|
|
tweet = tweet.lower() |
|
|
|
|
|
tweet = emoji.replace_emoji(tweet, replace='') |
|
|
|
|
|
tweet = re.sub(r'(.)\1{2,}', r'\1', tweet) |
|
|
|
|
|
row_split = tweet.split() |
|
|
|
for index, word in enumerate(row_split): |
|
|
|
|
|
if 'http' in word: |
|
row_split[index] = '' |
|
|
|
|
|
laugh_texts = ['hahaha', 'wahaha', 'hahaa', 'ahha', 'haaha', 'hahah', 'ahah', 'hha'] |
|
if any(x in word for x in laugh_texts): |
|
row_split[index] = 'haha' |
|
|
|
|
|
preprocessed_tweet = ' '.join(filter(None, row_split)) |
|
|
|
|
|
preprocessed_tweet, matches = fuzzy_lookup(preprocessed_tweet) |
|
|
|
|
|
if len(preprocessed_tweet.split()) == 1: |
|
return preprocessed_tweet, matches |
|
|
|
|
|
for i in contractions.items(): |
|
preprocessed_tweet = re.sub(rf"\b{i[0]}\b", i[1], preprocessed_tweet) |
|
|
|
return preprocessed_tweet, matches |
|
|
|
|
|
def predict(tweet): |
|
|
|
preprocessed_tweet, matched_profanity = preprocess(tweet) |
|
|
|
prediction = query(preprocessed_tweet) |
|
|
|
if type(prediction) is dict: |
|
|
|
return "Model is loading. Try again." |
|
|
|
if bool(matched_profanity) == False: |
|
return "No profanity" |
|
|
|
prediction = [tuple(i.values()) for i in prediction[0]] |
|
prediction = dict((x, y) for x, y in prediction) |
|
|
|
print("\nTWEET:", tweet) |
|
print("DETECTED PROFANITY:", matched_profanity) |
|
print("LABELS:", prediction, "\n") |
|
|
|
return prediction |
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
|
|
inputs=[gr.components.Textbox(lines=5, placeholder='Enter your input here', label='INPUT')], |
|
|
|
outputs=[gr.components.Label(num_top_classes=2, label="PREDICTION")], |
|
|
|
examples=['Tangina mo naman sobrang yabang mo gago!!๐ ๐ค @davidrafael', |
|
'Napakainit ngayong araw pakshet namaaan!!', |
|
'Napakabagal naman ng wifi tangina #PLDC #HelloDITO', |
|
'Bobo ka ba? napakadali lang nyan eh... ๐คก', |
|
'Uy gago laptrip yung nangyare samen kanina HAHAHA๐๐'], |
|
) |
|
|
|
demo.launch() |