mgbam commited on
Commit
f0581e4
ยท
verified ยท
1 Parent(s): d648b19

Upload README_DATA.md

Browse files
Files changed (1) hide show
  1. README_DATA.md +255 -0
README_DATA.md ADDED
@@ -0,0 +1,255 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Sample Diabetes Data - Test Your App! ๐Ÿ“Š
2
+
3
+ ## ๐Ÿ“ File: `sample_diabetes_data.csv`
4
+
5
+ This is **realistic synthetic CGM data** for a full day (24 hours) with interesting events!
6
+
7
+ ---
8
+
9
+ ## ๐ŸŽฏ What's in the Data
10
+
11
+ ### Timeline: January 15, 2025 (6:00 AM - 11:55 PM)
12
+ **200 data points** @ 5-minute intervals
13
+
14
+ ### Key Events to Watch For:
15
+
16
+ #### 1. **Morning Hypo Risk** (6:00 AM - 7:20 AM)
17
+ - Glucose drops from 95 โ†’ 80 mg/dL
18
+ - **Alert should trigger** around 7:15 AM
19
+ - **Breakfast bolus**: 45g carbs + 4.5u insulin at 7:20 AM
20
+ - Recovery to 128 mg/dL
21
+
22
+ #### 2. **Post-Breakfast Spike** (7:20 AM - 8:30 AM)
23
+ - Glucose rises to 128 mg/dL
24
+ - Gradual descent back to normal range
25
+
26
+ #### 3. **Morning Exercise** (10:30 AM - 12:00 PM)
27
+ - Heart rate increases (65 โ†’ 130 BPM)
28
+ - Steps accumulate rapidly
29
+ - Glucose stays stable due to activity
30
+
31
+ #### 4. **Lunch Spike** (12:00 PM - 1:15 PM)
32
+ - **Large meal**: 60g carbs + 6u insulin
33
+ - Glucose spikes to **176 mg/dL** (near hyper threshold)
34
+ - **Alert should trigger** around 1:00 PM
35
+ - Gradual descent over 3 hours
36
+
37
+ #### 5. **Late Afternoon Stability** (3:00 PM - 6:00 PM)
38
+ - Glucose stable in target range (100-110 mg/dL)
39
+ - Minimal significance scores expected
40
+
41
+ #### 6. **Dinner** (6:00 PM - 7:00 PM)
42
+ - 55g carbs + 5.5u insulin
43
+ - Moderate spike to 159 mg/dL
44
+ - Controlled descent
45
+
46
+ #### 7. **SEVERE HYPO EVENT** โš ๏ธ (10:00 PM)
47
+ - **CRITICAL**: Glucose drops to **15 mg/dL**!
48
+ - Overcorrection with 3u insulin (mistake scenario)
49
+ - **Multiple alerts expected**
50
+ - Emergency 15g carbs consumed
51
+ - Recovery to safe levels
52
+
53
+ #### 8. **Overnight Stability** (11:00 PM onwards)
54
+ - Glucose settles around 100 mg/dL
55
+ - Normal sleep HR (52-60 BPM)
56
+
57
+ ---
58
+
59
+ ## ๐Ÿงช Expected Results
60
+
61
+ ### Activation Patterns:
62
+ - **High activation**: During hypo (7:15 AM, 10:00 PM), hyper (1:00 PM)
63
+ - **Low activation**: Stable periods (3-6 PM, after 11 PM)
64
+ - **Target activation rate**: ~15-20% overall
65
+
66
+ ### Alerts Expected:
67
+ Approximately **3-5 high-risk alerts**:
68
+ 1. Morning hypo warning (~7:15 AM)
69
+ 2. Lunch hyper warning (~1:00-1:15 PM)
70
+ 3. **CRITICAL hypo** (~10:00-10:20 PM) - multiple alerts
71
+
72
+ ### Energy Savings:
73
+ - **~80-85%** energy saved vs always-on
74
+ - Most savings during stable periods
75
+ - More activations during risk events
76
+
77
+ ### Significance Components:
78
+ Watch how they change:
79
+ - **Glycemic deviation**: High during hypo/hyper
80
+ - **Velocity risk**: Spikes during rapid changes
81
+ - **IOB risk**: High after insulin doses
82
+ - **COB risk**: High after meals
83
+ - **Activity risk**: Elevated during exercise
84
+ - **Variability**: Shows instability during events
85
+
86
+ ---
87
+
88
+ ## ๐ŸŽฎ How to Test
89
+
90
+ ### Option 1: Local App
91
+ ```bash
92
+ cd "C:\Users\adminidiakhoa\sundew_algorithms\HULL_use\diabetes\sundew_diabetes_watch"
93
+ streamlit run app_advanced.py
94
+ ```
95
+
96
+ 1. **Uncheck** "Use synthetic example"
97
+ 2. Click "Browse files"
98
+ 3. Upload `sample_diabetes_data.csv`
99
+ 4. Watch the magic! โœจ
100
+
101
+ ### Option 2: Hugging Face Space
102
+ 1. Visit: https://huggingface.co/spaces/mgbam/sundew_diabetes_watch
103
+ 2. Upload `sample_diabetes_data.csv`
104
+ 3. Explore the visualizations
105
+
106
+ ---
107
+
108
+ ## ๐Ÿ” What to Look For
109
+
110
+ ### 1. Performance Dashboard
111
+ - Total events: **200**
112
+ - Activations: **30-40** (15-20%)
113
+ - Energy savings: **80-85%**
114
+ - Alerts: **3-5**
115
+
116
+ ### 2. Glucose Chart
117
+ - See the full day pattern
118
+ - Identify meal spikes
119
+ - Spot hypo events
120
+
121
+ ### 3. Significance vs Threshold
122
+ - **Watch the PI controller adapt!**
123
+ - Threshold moves to maintain 15% activation
124
+ - Significance spikes during risk events
125
+
126
+ ### 4. Energy Level
127
+ - **Bio-inspired regeneration** visible
128
+ - Drops during activations
129
+ - Regenerates during idle periods
130
+ - Should fluctuate, not flat
131
+
132
+ ### 5. Significance Components
133
+ - **6 colored lines** showing risk factors
134
+ - Glycemic deviation dominates during extremes
135
+ - Velocity spikes during rapid changes
136
+ - IOB/COB after meals
137
+
138
+ ### 6. Alerts Table
139
+ Look for warnings around:
140
+ - 7:15 AM (morning hypo approach)
141
+ - 1:00 PM (post-lunch hyper)
142
+ - 10:05-10:20 PM (critical hypo)
143
+
144
+ ### 7. Bootstrap Confidence Intervals
145
+ - F1 Score with 95% CI
146
+ - Precision with 95% CI
147
+ - Recall with 95% CI
148
+ - Check that CI ranges are reasonable
149
+
150
+ ---
151
+
152
+ ## ๐Ÿ“Š Advanced Analysis
153
+
154
+ ### Export Telemetry
155
+ 1. Check "Export Telemetry JSON"
156
+ 2. Download `sundew_diabetes_telemetry.json`
157
+ 3. Contains all 200 events with full details
158
+ 4. Use for:
159
+ - Hardware power measurement correlation
160
+ - Detailed analysis in Excel/Python
161
+ - Custom visualizations
162
+ - Research papers
163
+
164
+ ### Compare Presets
165
+ Try different Sundew configurations:
166
+
167
+ **`custom_health_hd82`** (Recommended for diabetes)
168
+ - 82% energy savings target
169
+ - Healthcare-optimized
170
+ - Expect: High recall, lower precision
171
+
172
+ **`tuned_v2`** (Balanced)
173
+ - General purpose
174
+ - Good balance
175
+ - Expect: Medium recall/precision
176
+
177
+ **`conservative`** (Maximum savings)
178
+ - Minimal activations
179
+ - Expect: Lower recall, higher savings
180
+
181
+ **`aggressive`** (Maximum safety)
182
+ - More activations
183
+ - Expect: Higher recall, lower savings
184
+
185
+ ---
186
+
187
+ ## ๐Ÿ“ Data Format
188
+
189
+ **Columns:**
190
+ - `timestamp`: DateTime in ISO format
191
+ - `glucose_mgdl`: Blood glucose in mg/dL (40-400 range)
192
+ - `carbs_g`: Carbohydrate intake in grams (0-60)
193
+ - `insulin_units`: Insulin dosage in units (0-6)
194
+ - `steps`: Cumulative step count (0-1065)
195
+ - `hr`: Heart rate in BPM (48-130)
196
+
197
+ **Frequency**: 5-minute intervals (standard CGM)
198
+
199
+ **Duration**: 18 hours (6 AM - 12 AM)
200
+
201
+ ---
202
+
203
+ ## ๐ŸŽฏ Challenge Yourself
204
+
205
+ ### Can You Spot:
206
+ 1. The exact time glucose crosses below 70 mg/dL?
207
+ 2. How long it takes to recover from the severe hypo?
208
+ 3. Which meal caused the highest glucose spike?
209
+ 4. When the PI controller adjusts threshold most dramatically?
210
+ 5. The period with lowest energy consumption?
211
+
212
+ ### Experiment With:
213
+ - Different target activation rates (5%, 15%, 30%)
214
+ - Different energy pressure values
215
+ - Different hypo/hyper thresholds
216
+ - Different Sundew presets
217
+
218
+ ---
219
+
220
+ ## ๐ŸŒŸ Pro Tips
221
+
222
+ 1. **Enable all visualizations** for full effect
223
+ 2. **Watch the threshold adapt** in real-time (Significance vs Threshold chart)
224
+ 3. **Check the 10 PM hypo** - algorithm should light up!
225
+ 4. **Export telemetry** to see component breakdown
226
+ 5. **Try bootstrap CI** for statistical rigor
227
+
228
+ ---
229
+
230
+ ## ๐ŸŽ“ Learning Outcomes
231
+
232
+ After testing with this data, you'll understand:
233
+
234
+ โœ… How Sundew adapts threshold to maintain target activation
235
+ โœ… How 6-factor significance scoring works
236
+ โœ… How energy regeneration creates sustainable monitoring
237
+ โœ… How bootstrap CI provides statistical confidence
238
+ โœ… How ensemble models improve predictions
239
+ โœ… How alerts trigger during real risk events
240
+
241
+ ---
242
+
243
+ ## ๐Ÿš€ Next Steps
244
+
245
+ 1. **Test with this data** to verify app works
246
+ 2. **Create your own data** with different patterns
247
+ 3. **Compare results** across different presets
248
+ 4. **Export telemetry** for deeper analysis
249
+ 5. **Share results** with your network!
250
+
251
+ ---
252
+
253
+ **This data showcases the algorithm at its finest!** ๐ŸŒฟโœจ
254
+
255
+ The severe hypo at 10 PM will really make Sundew **SHINE**!