mgbam commited on
Commit
b64c41b
·
verified ·
1 Parent(s): afa778c

Update tools/csv_parser.py

Browse files
Files changed (1) hide show
  1. tools/csv_parser.py +78 -46
tools/csv_parser.py CHANGED
@@ -1,67 +1,99 @@
1
- import pandas as pd
2
- from typing import Union
 
 
 
 
 
 
3
  import os
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
  def parse_csv_tool(file: Union[str, bytes]) -> str:
6
  """
7
- Parses a CSV or Excel file and returns a comprehensive schema and statistics report in Markdown.
8
- Supports large files by sampling if necessary and handles common parsing errors.
9
- """
10
- # Determine extension
11
- try:
12
- filename = getattr(file, 'name', file)
13
- ext = os.path.splitext(filename)[1].lower()
14
- except Exception:
15
- ext = ".csv"
16
 
17
- # Load DataFrame
 
 
 
 
 
 
18
  try:
19
- if ext in ('.xls', '.xlsx'):
20
- df = pd.read_excel(file, engine='openpyxl')
21
- else:
22
- df = pd.read_csv(file)
23
- except Exception as e:
24
- return f"❌ Failed to load data ({ext}): {e}"
25
 
26
- # Basic dimensions
27
  n_rows, n_cols = df.shape
28
 
29
- # Schema & dtypes
30
- schema_lines = [f"- **{col}**: {dtype}" for col, dtype in df.dtypes.items()]
31
- schema_md = "\n".join(schema_lines)
 
 
32
 
33
- # Missing values
34
- missing = df.isna().sum()
35
- missing_pct = (missing / n_rows * 100).round(1)
36
- missing_lines = []
37
- for col in df.columns:
38
- if missing[col] > 0:
39
- missing_lines.append(f"- **{col}**: {missing[col]} ({missing_pct[col]}%)")
40
- missing_md = "\n".join(missing_lines) or "None"
41
 
42
- # Descriptive stats (numeric)
43
- desc = df.describe().T.round(2)
44
- desc_md = desc.to_markdown()
 
 
45
 
46
- # Memory usage
47
- mem_mb = df.memory_usage(deep=True).sum() / (1024 ** 2)
48
 
49
- # Assemble report
50
- report = f"""
51
- # 📊 Dataset Overview
52
 
53
- - **Rows:** {n_rows}
54
- - **Columns:** {n_cols}
55
- - **Memory Usage:** {mem_mb:.2f} MB
 
 
56
 
57
- ## 🗂 Schema & Data Types
58
  {schema_md}
59
 
60
- ## 🛠 Missing Values
61
  {missing_md}
62
 
63
- ## 📈 Descriptive Statistics
64
  {desc_md}
65
  """.strip()
66
-
67
- return report
 
1
+ # tools/csv_parser.py
2
+ # ------------------------------------------------------------
3
+ # Reads CSV / Excel, samples for very large files, and returns a
4
+ # Markdown‑formatted “quick‑scan” report: dimensions, schema,
5
+ # missing‑value profile, numeric describe(), and memory footprint.
6
+
7
+ from __future__ import annotations
8
+
9
  import os
10
+ from typing import Union
11
+
12
+ import pandas as pd
13
+
14
+
15
+ def _safe_read(path_or_buf: Union[str, bytes], sample_rows: int = 1_000_000) -> pd.DataFrame:
16
+ """Read CSV or Excel. If the file has > sample_rows, read only a sample."""
17
+ # Determine extension (best‑effort)
18
+ ext = ".csv"
19
+ if isinstance(path_or_buf, str):
20
+ ext = os.path.splitext(path_or_buf)[1].lower()
21
+
22
+ if ext in (".xls", ".xlsx"):
23
+ # Excel — read first sheet
24
+ df = pd.read_excel(path_or_buf, engine="openpyxl")
25
+ else: # CSV family
26
+ # First row‑count check: pandas 1.5+ uses memory map ⇒ cheap for header only
27
+ nrows_total = sum(1 for _ in open(path_or_buf, "rb")) if isinstance(path_or_buf, str) else None
28
+ if nrows_total and nrows_total > sample_rows:
29
+ # sample uniformly without loading everything
30
+ skip = sorted(
31
+ pd.np.random.choice(range(1, nrows_total), nrows_total - sample_rows, replace=False)
32
+ )
33
+ df = pd.read_csv(path_or_buf, skiprows=skip)
34
+ else:
35
+ df = pd.read_csv(path_or_buf)
36
+
37
+ return df
38
+
39
 
40
  def parse_csv_tool(file: Union[str, bytes]) -> str:
41
  """
42
+ Return a **Markdown** report describing the dataset.
 
 
 
 
 
 
 
 
43
 
44
+ Sections:
45
+ • Dimensions
46
+ • Schema (+ dtypes)
47
+ • Missing‑value counts + %
48
+ • Numeric descriptive statistics
49
+ • Memory usage
50
+ """
51
  try:
52
+ df = _safe_read(file)
53
+ except Exception as exc:
54
+ return f"❌ Failed to load data: {exc}"
 
 
 
55
 
 
56
  n_rows, n_cols = df.shape
57
 
58
+ # ---------- schema ----------
59
+ schema_md = "\n".join(
60
+ f"- **{col}** – `{dtype}`"
61
+ for col, dtype in df.dtypes.items()
62
+ )
63
 
64
+ # ---------- missing ----------
65
+ miss_ct = df.isna().sum()
66
+ miss_pct = (miss_ct / len(df) * 100).round(1)
67
+ missing_md = "\n".join(
68
+ f"- **{c}**: {miss_ct[c]} ({miss_pct[c]} %)"
69
+ for c in df.columns if miss_ct[c] > 0
70
+ ) or "None"
 
71
 
72
+ # ---------- descriptive stats (numeric only) ----------
73
+ if df.select_dtypes("number").shape[1]:
74
+ desc_md = df.describe().T.round(2).to_markdown()
75
+ else:
76
+ desc_md = "_No numeric columns_"
77
 
78
+ # ---------- memory ----------
79
+ mem_mb = df.memory_usage(deep=True).sum() / 1024**2
80
 
81
+ # ---------- assemble ----------
82
+ return f"""
83
+ # 📊 Dataset Overview
84
 
85
+ | metric | value |
86
+ | ------ | ----- |
87
+ | Rows | {n_rows:,} |
88
+ | Columns| {n_cols} |
89
+ | Memory | {mem_mb:.2f} MB |
90
 
91
+ ## 🗂 Schema
92
  {schema_md}
93
 
94
+ ## 🛠 Missing Values
95
  {missing_md}
96
 
97
+ ## 📈 Descriptive Statistics (numeric)
98
  {desc_md}
99
  """.strip()