Spaces:
Running
Running
Update tools/forecaster.py
Browse files- tools/forecaster.py +23 -11
tools/forecaster.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
from statsmodels.tsa.arima.model import ARIMA
|
3 |
import plotly.graph_objects as go
|
@@ -5,28 +7,38 @@ import plotly.graph_objects as go
|
|
5 |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
|
6 |
"""
|
7 |
Forecast next 3 periods for any numeric metric.
|
8 |
-
Saves PNG
|
9 |
"""
|
|
|
10 |
df = pd.read_csv(file_path)
|
11 |
|
|
|
12 |
try:
|
13 |
df[date_col] = pd.to_datetime(df[date_col])
|
14 |
except Exception:
|
15 |
-
return f"β '{date_col}'
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
model_fit = model.fit()
|
23 |
-
forecast = model_fit.forecast(steps=3)
|
24 |
|
25 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
fig = go.Figure()
|
27 |
-
fig.add_scatter(x=
|
28 |
fig.add_scatter(x=forecast.index, y=forecast, mode="lines", name="Forecast")
|
29 |
fig.update_layout(title=f"{value_col} Forecast", template="plotly_dark")
|
30 |
-
fig.write_image("forecast_plot.png")
|
31 |
|
|
|
32 |
return forecast.to_frame(name="Forecast").to_string()
|
|
|
1 |
+
# tools/forecaster.py
|
2 |
+
|
3 |
import pandas as pd
|
4 |
from statsmodels.tsa.arima.model import ARIMA
|
5 |
import plotly.graph_objects as go
|
|
|
7 |
def forecast_metric_tool(file_path: str, date_col: str, value_col: str):
|
8 |
"""
|
9 |
Forecast next 3 periods for any numeric metric.
|
10 |
+
Saves PNG to /tmp via our safe write monkey-patch, returns forecast table as text.
|
11 |
"""
|
12 |
+
# 1) Load
|
13 |
df = pd.read_csv(file_path)
|
14 |
|
15 |
+
# 2) Parse dates
|
16 |
try:
|
17 |
df[date_col] = pd.to_datetime(df[date_col])
|
18 |
except Exception:
|
19 |
+
return f"β Could not parse '{date_col}' as dates."
|
20 |
|
21 |
+
# 3) Coerce metric to numeric, drop invalid
|
22 |
+
df[value_col] = pd.to_numeric(df[value_col], errors="coerce")
|
23 |
+
series = df.set_index(date_col)[value_col].dropna()
|
24 |
|
25 |
+
if series.empty:
|
26 |
+
return f"β Column '{value_col}' has no valid numeric data after coercion."
|
|
|
|
|
27 |
|
28 |
+
# 4) Fit ARIMA
|
29 |
+
try:
|
30 |
+
model = ARIMA(series, order=(1, 1, 1))
|
31 |
+
model_fit = model.fit()
|
32 |
+
except Exception as e:
|
33 |
+
return f"β ARIMA fitting failed: {e}"
|
34 |
+
|
35 |
+
# 5) Forecast & plot
|
36 |
+
forecast = model_fit.forecast(steps=3)
|
37 |
fig = go.Figure()
|
38 |
+
fig.add_scatter(x=series.index, y=series, mode="lines", name=value_col)
|
39 |
fig.add_scatter(x=forecast.index, y=forecast, mode="lines", name="Forecast")
|
40 |
fig.update_layout(title=f"{value_col} Forecast", template="plotly_dark")
|
41 |
+
fig.write_image("forecast_plot.png") # goes into /tmp thanks to our monkey-patch
|
42 |
|
43 |
+
# 6) Return textual table
|
44 |
return forecast.to_frame(name="Forecast").to_string()
|