mfrng's picture
Update app.py
798cb1c verified
import os
import io
import tempfile
import zipfile
import numpy as np
import pandas as pd
import librosa
import librosa.display
import matplotlib.pyplot as plt
import soundfile as sf
import gradio as gr
from scipy.signal import medfilt
from noisereduce import reduce_noise
import webrtcvad
from pesq import pesq
from pystoi import stoi
def load_audio(file_obj):
y, sr = librosa.load(file_obj, sr=16000)
return y, sr
def save_audio(y, sr, path):
sf.write(path, y, sr)
def plot_waveform(y, sr, title):
plt.figure(figsize=(10, 2))
librosa.display.waveshow(y, sr=sr)
plt.title(title)
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
return buf
def plot_spectrogram(y, sr, title):
plt.figure(figsize=(10, 3))
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max)
librosa.display.specshow(D, sr=sr, x_axis='time', y_axis='log')
plt.colorbar(format='%+2.0f dB')
plt.title(title)
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
return buf
def vad_plot(y, sr, title):
vad = webrtcvad.Vad(2)
if sr != 16000:
y = librosa.resample(y, orig_sr=sr, target_sr=16000)
sr = 16000
frame_duration_ms = 30
frame_size = int(sr * frame_duration_ms / 1000)
y = np.pad(y, (0, frame_size - len(y) % frame_size)) if len(y) % frame_size != 0 else y
frames = np.split(y, len(y) // frame_size)
voiced = []
for frame in frames:
pcm = (frame * 32767).astype(np.int16).tobytes()
try:
voiced.append(vad.is_speech(pcm, sr))
except:
voiced.append(False)
plt.figure(figsize=(10, 1.5))
plt.plot(voiced, drawstyle='steps-mid')
plt.title(title)
buf = io.BytesIO()
plt.tight_layout()
plt.savefig(buf, format='png')
plt.close()
buf.seek(0)
return buf
def compute_pesq_mfcc_stoi(original_path, enhanced_path):
sr = 16000
original, _ = librosa.load(original_path, sr=sr)
enhanced, _ = librosa.load(enhanced_path, sr=sr)
pesq_score = pesq(sr, original, enhanced, 'wb')
stoi_score = stoi(original, enhanced, sr, extended=False)
mfcc_diff = np.mean(np.abs(
librosa.feature.mfcc(original, sr, n_mfcc=13) -
librosa.feature.mfcc(enhanced, sr, n_mfcc=13)
))
return pesq_score, stoi_score, mfcc_diff
def compute_snr(original, enhanced):
noise = original - enhanced
snr = 10 * np.log10(np.sum(original ** 2) / (np.sum(noise ** 2) + 1e-9))
return snr
def noise_reduction(y, sr): return reduce_noise(y=y, sr=sr)
def voice_isolation(y, sr): return y # Placeholder
def reverb_cleanup(y, sr): return medfilt(y, kernel_size=5)
def volume_normalize(y): return y / np.max(np.abs(y)) if np.max(np.abs(y)) > 0 else y
def language_aware_tuning(y, sr): return librosa.effects.preemphasis(y)
def process_files(files, nr, vi, reverb, vol, lang, skip_metrics=False, progress=gr.Progress()):
results, metrics = [], []
temp_dir = tempfile.mkdtemp()
zip_path = os.path.join(temp_dir, "enhanced_output.zip")
zipf = zipfile.ZipFile(zip_path, 'w')
total = len(files)
for i, file_obj in enumerate(files):
progress((i + 1) / total, desc=f"Processing {file_obj.name}")
y, sr = load_audio(file_obj)
original_y = y.copy()
if nr: y = noise_reduction(y, sr)
if vi: y = voice_isolation(y, sr)
if reverb: y = reverb_cleanup(y, sr)
if vol: y = volume_normalize(y)
if lang: y = language_aware_tuning(y, sr)
name = os.path.splitext(file_obj.name)[0]
orig_path = os.path.join(temp_dir, f"{name}_original.wav")
enh_path = os.path.join(temp_dir, f"{name}_enhanced.wav")
save_audio(original_y, sr, orig_path)
save_audio(y, sr, enh_path)
for plot_func, label in [(plot_waveform, "waveform"), (plot_spectrogram, "spectrogram"), (vad_plot, "vad")]:
for typ, signal in [("original", original_y), ("enhanced", y)]:
buf = plot_func(signal, sr, f"{typ.title()} {label.title()}")
img_path = os.path.join(temp_dir, f"{name}_{label}_{typ}.png")
with open(img_path, "wb") as f:
f.write(buf.read())
zipf.write(img_path, arcname=os.path.basename(img_path))
if skip_metrics:
pesq_score = stoi_score = mfcc_diff = None
else:
try:
pesq_score, stoi_score, mfcc_diff = compute_pesq_mfcc_stoi(orig_path, enh_path)
except:
pesq_score, stoi_score, mfcc_diff = None, None, None
snr = compute_snr(original_y, y)
metrics.append({
"file": file_obj.name,
"SNR": snr,
"PESQ": pesq_score,
"STOI": stoi_score,
"MFCC Diff": mfcc_diff
})
zipf.write(orig_path, arcname=os.path.basename(orig_path))
zipf.write(enh_path, arcname=os.path.basename(enh_path))
df = pd.DataFrame(metrics)
metrics_path = os.path.join(temp_dir, "metrics.csv")
df.to_csv(metrics_path, index=False)
zipf.write(metrics_path, arcname="metrics.csv")
zipf.close()
enhanced_files = [f for f in os.listdir(temp_dir) if f.endswith("_enhanced.wav")]
preview_path = os.path.join(temp_dir, enhanced_files[0]) if enhanced_files else None
return zip_path, preview_path
def run_enhancement(files, nr, vi, reverb, vol, lang, skip_metrics):
if not files:
return None, None, "Upload audio files.", gr.update(visible=False)
if not any([nr, vi, reverb, vol, lang]):
return None, None, "Select at least one enhancement.", gr.update(visible=True, value="No enhancements selected.")
zip_path, preview = process_files(files, nr, vi, reverb, vol, lang, skip_metrics)
return zip_path, preview, "Done!", gr.update(visible=False)
with gr.Blocks() as demo:
gr.Markdown("## 🎧 AudioVoiceEnhancer.AI")
files = gr.File(label="Upload Audio", file_types=[".wav", ".mp3"], file_count="multiple")
with gr.Row():
nr = gr.Checkbox(label="Noise Reduction", value=True)
vi = gr.Checkbox(label="Voice Isolation", value=True)
reverb = gr.Checkbox(label="Reverb Cleanup", value=True)
vol = gr.Checkbox(label="Volume Normalize", value=True)
lang = gr.Checkbox(label="Language-Aware Tuning", value=True)
skip_metrics = gr.Checkbox(label="πŸš€ Skip PESQ/STOI for Speed", value=True)
run_btn = gr.Button("Enhance Audio")
warning = gr.Textbox(visible=False, label="Warning")
output_zip = gr.File(label="Download ZIP")
output_audio = gr.Audio(label="Preview Enhanced", type="filepath")
label = gr.Label("Status")
run_btn.click(
fn=run_enhancement,
inputs=[files, nr, vi, reverb, vol, lang, skip_metrics],
outputs=[output_zip, output_audio, label, warning],
show_progress=True
)
demo.queue()
demo.launch()