ClothingGAN / netdissect /zdataset.py
mfrashad's picture
Init code
97069e1
raw
history blame
1.64 kB
import os, torch, numpy
from torch.utils.data import TensorDataset
def z_dataset_for_model(model, size=100, seed=1):
return TensorDataset(z_sample_for_model(model, size, seed))
def z_sample_for_model(model, size=100, seed=1):
# If the model is marked with an input shape, use it.
if hasattr(model, 'input_shape'):
sample = standard_z_sample(size, model.input_shape[1], seed=seed).view(
(size,) + model.input_shape[1:])
return sample
# Examine first conv in model to determine input feature size.
first_layer = [c for c in model.modules()
if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d,
torch.nn.Linear))][0]
# 4d input if convolutional, 2d input if first layer is linear.
if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)):
sample = standard_z_sample(
size, first_layer.in_channels, seed=seed)[:,:,None,None]
else:
sample = standard_z_sample(
size, first_layer.in_features, seed=seed)
return sample
def standard_z_sample(size, depth, seed=1, device=None):
'''
Generate a standard set of random Z as a (size, z_dimension) tensor.
With the same random seed, it always returns the same z (e.g.,
the first one is always the same regardless of the size.)
'''
# Use numpy RandomState since it can be done deterministically
# without affecting global state
rng = numpy.random.RandomState(seed)
result = torch.from_numpy(
rng.standard_normal(size * depth)
.reshape(size, depth)).float()
if device is not None:
result = result.to(device)
return result