Spaces:
Runtime error
Runtime error
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. | |
# | |
# This work is licensed under the Creative Commons Attribution-NonCommercial | |
# 4.0 International License. To view a copy of this license, visit | |
# http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to | |
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. | |
"""Perceptual Path Length (PPL).""" | |
import numpy as np | |
import tensorflow as tf | |
import dnnlib.tflib as tflib | |
from metrics import metric_base | |
from training import misc | |
#---------------------------------------------------------------------------- | |
# Normalize batch of vectors. | |
def normalize(v): | |
return v / tf.sqrt(tf.reduce_sum(tf.square(v), axis=-1, keepdims=True)) | |
# Spherical interpolation of a batch of vectors. | |
def slerp(a, b, t): | |
a = normalize(a) | |
b = normalize(b) | |
d = tf.reduce_sum(a * b, axis=-1, keepdims=True) | |
p = t * tf.math.acos(d) | |
c = normalize(b - d * a) | |
d = a * tf.math.cos(p) + c * tf.math.sin(p) | |
return normalize(d) | |
#---------------------------------------------------------------------------- | |
class PPL(metric_base.MetricBase): | |
def __init__(self, num_samples, epsilon, space, sampling, minibatch_per_gpu, **kwargs): | |
assert space in ['z', 'w'] | |
assert sampling in ['full', 'end'] | |
super().__init__(**kwargs) | |
self.num_samples = num_samples | |
self.epsilon = epsilon | |
self.space = space | |
self.sampling = sampling | |
self.minibatch_per_gpu = minibatch_per_gpu | |
def _evaluate(self, Gs, num_gpus): | |
minibatch_size = num_gpus * self.minibatch_per_gpu | |
# Construct TensorFlow graph. | |
distance_expr = [] | |
for gpu_idx in range(num_gpus): | |
with tf.device('/gpu:%d' % gpu_idx): | |
Gs_clone = Gs.clone() | |
noise_vars = [var for name, var in Gs_clone.components.synthesis.vars.items() if name.startswith('noise')] | |
# Generate random latents and interpolation t-values. | |
lat_t01 = tf.random_normal([self.minibatch_per_gpu * 2] + Gs_clone.input_shape[1:]) | |
lerp_t = tf.random_uniform([self.minibatch_per_gpu], 0.0, 1.0 if self.sampling == 'full' else 0.0) | |
# Interpolate in W or Z. | |
if self.space == 'w': | |
dlat_t01 = Gs_clone.components.mapping.get_output_for(lat_t01, None, is_validation=True) | |
dlat_t0, dlat_t1 = dlat_t01[0::2], dlat_t01[1::2] | |
dlat_e0 = tflib.lerp(dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis]) | |
dlat_e1 = tflib.lerp(dlat_t0, dlat_t1, lerp_t[:, np.newaxis, np.newaxis] + self.epsilon) | |
dlat_e01 = tf.reshape(tf.stack([dlat_e0, dlat_e1], axis=1), dlat_t01.shape) | |
else: # space == 'z' | |
lat_t0, lat_t1 = lat_t01[0::2], lat_t01[1::2] | |
lat_e0 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis]) | |
lat_e1 = slerp(lat_t0, lat_t1, lerp_t[:, np.newaxis] + self.epsilon) | |
lat_e01 = tf.reshape(tf.stack([lat_e0, lat_e1], axis=1), lat_t01.shape) | |
dlat_e01 = Gs_clone.components.mapping.get_output_for(lat_e01, None, is_validation=True) | |
# Synthesize images. | |
with tf.control_dependencies([var.initializer for var in noise_vars]): # use same noise inputs for the entire minibatch | |
images = Gs_clone.components.synthesis.get_output_for(dlat_e01, is_validation=True, randomize_noise=False) | |
# Crop only the face region. | |
c = int(images.shape[2] // 8) | |
images = images[:, :, c*3 : c*7, c*2 : c*6] | |
# Downsample image to 256x256 if it's larger than that. VGG was built for 224x224 images. | |
if images.shape[2] > 256: | |
factor = images.shape[2] // 256 | |
images = tf.reshape(images, [-1, images.shape[1], images.shape[2] // factor, factor, images.shape[3] // factor, factor]) | |
images = tf.reduce_mean(images, axis=[3,5]) | |
# Scale dynamic range from [-1,1] to [0,255] for VGG. | |
images = (images + 1) * (255 / 2) | |
# Evaluate perceptual distance. | |
img_e0, img_e1 = images[0::2], images[1::2] | |
distance_measure = misc.load_pkl('https://drive.google.com/uc?id=1N2-m9qszOeVC9Tq77WxsLnuWwOedQiD2') # vgg16_zhang_perceptual.pkl | |
distance_expr.append(distance_measure.get_output_for(img_e0, img_e1) * (1 / self.epsilon**2)) | |
# Sampling loop. | |
all_distances = [] | |
for _ in range(0, self.num_samples, minibatch_size): | |
all_distances += tflib.run(distance_expr) | |
all_distances = np.concatenate(all_distances, axis=0) | |
# Reject outliers. | |
lo = np.percentile(all_distances, 1, interpolation='lower') | |
hi = np.percentile(all_distances, 99, interpolation='higher') | |
filtered_distances = np.extract(np.logical_and(lo <= all_distances, all_distances <= hi), all_distances) | |
self._report_result(np.mean(filtered_distances)) | |
#---------------------------------------------------------------------------- | |