Spaces:
Runtime error
Runtime error
# Copyright 2020 Erik Härkönen. All rights reserved. | |
# This file is licensed to you under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. You may obtain a copy | |
# of the License at http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software distributed under | |
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS | |
# OF ANY KIND, either express or implied. See the License for the specific language | |
# governing permissions and limitations under the License. | |
import sys | |
import argparse | |
import json | |
from copy import deepcopy | |
class Config: | |
def __init__(self, **kwargs): | |
self.from_args([]) # set all defaults | |
self.default_args = deepcopy(self.__dict__) | |
self.from_dict(kwargs) # override | |
def __str__(self): | |
custom = {} | |
default = {} | |
# Find non-default arguments | |
for k, v in self.__dict__.items(): | |
if k == 'default_args': | |
continue | |
in_default = k in self.default_args | |
same_value = self.default_args.get(k) == v | |
if in_default and same_value: | |
default[k] = v | |
else: | |
custom[k] = v | |
config = { | |
'custom': custom, | |
'default': default | |
} | |
return json.dumps(config, indent=4) | |
def __repr__(self): | |
return self.__str__() | |
def from_dict(self, dictionary): | |
for k, v in dictionary.items(): | |
setattr(self, k, v) | |
return self | |
def from_args(self, args=sys.argv[1:]): | |
parser = argparse.ArgumentParser(description='GAN component analysis config') | |
parser.add_argument('--model', dest='model', type=str, default='StyleGAN', help='The network to analyze') # StyleGAN, DCGAN, ProGAN, BigGAN-XYZ | |
parser.add_argument('--layer', dest='layer', type=str, default='g_mapping', help='The layer to analyze') | |
parser.add_argument('--class', dest='output_class', type=str, default=None, help='Output class to generate (BigGAN: Imagenet, ProGAN: LSUN)') | |
parser.add_argument('--est', dest='estimator', type=str, default='ipca', help='The algorithm to use [pca, fbpca, cupca, spca, ica]') | |
parser.add_argument('--sparsity', type=float, default=1.0, help='Sparsity parameter of SPCA') | |
parser.add_argument('--video', dest='make_video', action='store_true', help='Generate output videos (MP4s)') | |
parser.add_argument('--batch', dest='batch_mode', action='store_true', help="Don't open windows, instead save results to file") | |
parser.add_argument('-b', dest='batch_size', type=int, default=None, help='Minibatch size, leave empty for automatic detection') | |
parser.add_argument('-c', dest='components', type=int, default=80, help='Number of components to keep') | |
parser.add_argument('-n', type=int, default=300_000, help='Number of examples to use in decomposition') | |
parser.add_argument('--use_w', action='store_true', help='Use W latent space (StyleGAN(2))') | |
parser.add_argument('--sigma', type=float, default=2.0, help='Number of stdevs to walk in visualize.py') | |
parser.add_argument('--inputs', type=str, default=None, help='Path to directory with named components') | |
parser.add_argument('--seed', type=int, default=None, help='Seed used in decomposition') | |
args = parser.parse_args(args) | |
return self.from_dict(args.__dict__) |