Spaces:
Runtime error
Runtime error
''' | |
A simple tool to generate sample of output of a GAN, | |
subject to filtering, sorting, or intervention. | |
''' | |
import torch, numpy, os, argparse, sys, shutil, errno, numbers | |
from PIL import Image | |
from torch.utils.data import TensorDataset | |
from netdissect.zdataset import standard_z_sample | |
from netdissect.progress import default_progress, verbose_progress | |
from netdissect.autoeval import autoimport_eval | |
from netdissect.workerpool import WorkerBase, WorkerPool | |
from netdissect.nethook import retain_layers | |
from netdissect.runningstats import RunningTopK | |
def main(): | |
parser = argparse.ArgumentParser(description='GAN sample making utility') | |
parser.add_argument('--model', type=str, default=None, | |
help='constructor for the model to test') | |
parser.add_argument('--pthfile', type=str, default=None, | |
help='filename of .pth file for the model') | |
parser.add_argument('--outdir', type=str, default='images', | |
help='directory for image output') | |
parser.add_argument('--size', type=int, default=100, | |
help='number of images to output') | |
parser.add_argument('--test_size', type=int, default=None, | |
help='number of images to test') | |
parser.add_argument('--layer', type=str, default=None, | |
help='layer to inspect') | |
parser.add_argument('--seed', type=int, default=1, | |
help='seed') | |
parser.add_argument('--quiet', action='store_true', default=False, | |
help='silences console output') | |
if len(sys.argv) == 1: | |
parser.print_usage(sys.stderr) | |
sys.exit(1) | |
args = parser.parse_args() | |
verbose_progress(not args.quiet) | |
# Instantiate the model | |
model = autoimport_eval(args.model) | |
if args.pthfile is not None: | |
data = torch.load(args.pthfile) | |
if 'state_dict' in data: | |
meta = {} | |
for key in data: | |
if isinstance(data[key], numbers.Number): | |
meta[key] = data[key] | |
data = data['state_dict'] | |
model.load_state_dict(data) | |
# Unwrap any DataParallel-wrapped model | |
if isinstance(model, torch.nn.DataParallel): | |
model = next(model.children()) | |
# Examine first conv in model to determine input feature size. | |
first_layer = [c for c in model.modules() | |
if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d, | |
torch.nn.Linear))][0] | |
# 4d input if convolutional, 2d input if first layer is linear. | |
if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): | |
z_channels = first_layer.in_channels | |
spatialdims = (1, 1) | |
else: | |
z_channels = first_layer.in_features | |
spatialdims = () | |
# Instrument the model | |
retain_layers(model, [args.layer]) | |
model.cuda() | |
if args.test_size is None: | |
args.test_size = args.size * 20 | |
z_universe = standard_z_sample(args.test_size, z_channels, | |
seed=args.seed) | |
z_universe = z_universe.view(tuple(z_universe.shape) + spatialdims) | |
indexes = get_all_highest_znums( | |
model, z_universe, args.size, seed=args.seed) | |
save_chosen_unit_images(args.outdir, model, z_universe, indexes, | |
lightbox=True) | |
def get_all_highest_znums(model, z_universe, size, | |
batch_size=10, seed=1): | |
# The model should have been instrumented already | |
retained_items = list(model.retained.items()) | |
assert len(retained_items) == 1 | |
layer = retained_items[0][0] | |
# By default, a 10% sample | |
progress = default_progress() | |
num_units = None | |
with torch.no_grad(): | |
# Pass 1: collect max activation stats | |
z_loader = torch.utils.data.DataLoader(TensorDataset(z_universe), | |
batch_size=batch_size, num_workers=2, | |
pin_memory=True) | |
rtk = RunningTopK(k=size) | |
for [z] in progress(z_loader, desc='Finding max activations'): | |
z = z.cuda() | |
model(z) | |
feature = model.retained[layer] | |
num_units = feature.shape[1] | |
max_feature = feature.view( | |
feature.shape[0], num_units, -1).max(2)[0] | |
rtk.add(max_feature) | |
td, ti = rtk.result() | |
highest = ti.sort(1)[0] | |
return highest | |
def save_chosen_unit_images(dirname, model, z_universe, indices, | |
shared_dir="shared_images", | |
unitdir_template="unit_{}", | |
name_template="image_{}.jpg", | |
lightbox=False, batch_size=50, seed=1): | |
all_indices = torch.unique(indices.view(-1), sorted=True) | |
z_sample = z_universe[all_indices] | |
progress = default_progress() | |
sdir = os.path.join(dirname, shared_dir) | |
created_hashdirs = set() | |
for index in range(len(z_universe)): | |
hd = hashdir(index) | |
if hd not in created_hashdirs: | |
created_hashdirs.add(hd) | |
os.makedirs(os.path.join(sdir, hd), exist_ok=True) | |
with torch.no_grad(): | |
# Pass 2: now generate images | |
z_loader = torch.utils.data.DataLoader(TensorDataset(z_sample), | |
batch_size=batch_size, num_workers=2, | |
pin_memory=True) | |
saver = WorkerPool(SaveImageWorker) | |
for batch_num, [z] in enumerate(progress(z_loader, | |
desc='Saving images')): | |
z = z.cuda() | |
start_index = batch_num * batch_size | |
im = ((model(z) + 1) / 2 * 255).clamp(0, 255).byte().permute( | |
0, 2, 3, 1).cpu() | |
for i in range(len(im)): | |
index = all_indices[i + start_index].item() | |
filename = os.path.join(sdir, hashdir(index), | |
name_template.format(index)) | |
saver.add(im[i].numpy(), filename) | |
saver.join() | |
linker = WorkerPool(MakeLinkWorker) | |
for u in progress(range(len(indices)), desc='Making links'): | |
udir = os.path.join(dirname, unitdir_template.format(u)) | |
os.makedirs(udir, exist_ok=True) | |
for r in range(indices.shape[1]): | |
index = indices[u,r].item() | |
fn = name_template.format(index) | |
# sourcename = os.path.join('..', shared_dir, fn) | |
sourcename = os.path.join(sdir, hashdir(index), fn) | |
targname = os.path.join(udir, fn) | |
linker.add(sourcename, targname) | |
if lightbox: | |
copy_lightbox_to(udir) | |
linker.join() | |
def copy_lightbox_to(dirname): | |
srcdir = os.path.realpath( | |
os.path.join(os.getcwd(), os.path.dirname(__file__))) | |
shutil.copy(os.path.join(srcdir, 'lightbox.html'), | |
os.path.join(dirname, '+lightbox.html')) | |
def hashdir(index): | |
# To keep the number of files the shared directory lower, split it | |
# into 100 subdirectories named as follows. | |
return '%02d' % (index % 100) | |
class SaveImageWorker(WorkerBase): | |
# Saving images can be sped up by sending jpeg encoding and | |
# file-writing work to a pool. | |
def work(self, data, filename): | |
Image.fromarray(data).save(filename, optimize=True, quality=100) | |
class MakeLinkWorker(WorkerBase): | |
# Creating symbolic links is a bit slow and can be done faster | |
# in parallel rather than waiting for each to be created. | |
def work(self, sourcename, targname): | |
try: | |
os.link(sourcename, targname) | |
except OSError as e: | |
if e.errno == errno.EEXIST: | |
os.remove(targname) | |
os.link(sourcename, targname) | |
else: | |
raise | |
class MakeSyminkWorker(WorkerBase): | |
# Creating symbolic links is a bit slow and can be done faster | |
# in parallel rather than waiting for each to be created. | |
def work(self, sourcename, targname): | |
try: | |
os.symlink(sourcename, targname) | |
except OSError as e: | |
if e.errno == errno.EEXIST: | |
os.remove(targname) | |
os.symlink(sourcename, targname) | |
else: | |
raise | |
if __name__ == '__main__': | |
main() | |